Глава 22 Солнце в кармане

Глава 22

Солнце в кармане

Первый ученый, которого я посетил… восемь лет разрабатывал проект извлечения из огурцов солнечных лучей, которые предполагал заключить в герметически закупоренные склянки, чтобы затем пользоваться ими для согревания воздуха в случае холодного и дождливого лета. Он выразил уверенность, что еще через восемь лет сможет поставлять солнечный свет для губернаторских садов по умеренной цене[668].

Джонатан Свифт, “Путешествия Гулливера”

Солнце будет буквально у него в кармане.

Негодяй в “Человеке с золотым пистолетом” о покупателях своего преобразователя солнечной энергии

“Человек с золотым пистолетом” стал последним романом Яна Флеминга, он был опубликован неполным и посмертно. Это не помешало девятому фильму бондианы выйти в декабре 1974 года, в разгар энергетического кризиса 1970-х, когда интерес всего мира к альтернативным формам энергии достиг точки кипения. Бонду предстояло отыскать солнечный возбудитель, очень важный для специального преобразователя энергии. “На 95 % эффективное устройство, оно обуздает солнечную радиацию и подарит колоссальную силу своему хозяину”. Его главный противник – профессиональный киллер, которого играет Кристофер Ли (кузен Флеминга, первоначально выбранный им на роль Бонда); история достигает кульминации в момент разрушения солнечной установки на острове близ побережья Китая.

За десятилетия, прошедшие с тех времен, тема солнечной энергии стала еще более популярной. Возможно, роль верховных часов у Солнца перехватил атом, но пока все еще неясно, сможет ли он занять место Солнца в качестве источника энергии для человечества. Солнце является величайшим возобновляемым ресурсом – оно создает уголь, торф, нефть, гидроэлектричество и природный газ (метан). Оно поднимает влагу в атмосферу и возвращает ее в виде ливней, которые вращают турбины; оно приводит в движение ветер и волны и все с ними связанное; оно не проявляет никаких признаков умирания; оно щедро расточает свое богатство на всю планету, изливая на поверхность Земли за сорок минут больше энергии, чем мы используем за целый год. Около 35 % энергии, достигающей Земли, отражаются от облаков обратно в космос, еще около 19 % поглощаются атмосферой, но все равно остается в 12 тыс. раз больше энергии, чем используется во всех созданных человеком устройствах. Только два вида возобновляемой энергии не являются продуктом солнечного излучения – геотермальная энергия и приливная (Солнце поднимает приливную волну благодаря своей массе, а не радиации). Но лишь в последние тридцать лет этот изобильный источник стал серьезно рассматриваться властными кругами. Ян Флеминг обгонял свое время.

Идея поставить Солнце себе на службу возникла у людей почти сразу, как только они начали экспериментировать с окружающей средой. Уже в III веке до н. э. и греки, и римляне использовали “сжигающие зеркала”, ручные вогнутые рефлекторы, чтобы фокусировать солнечный свет на вражеских кораблях. Архимед (287–212 до н. э.), по легенде, соорудил целую батарею таких рефлекторов в 212 году до н. э.: чтобы спасти Сиракузы от блокады римского флота, он сжег паруса противника “на расстоянии полета стрелы” (около 50 м). История похожа на миф[669], но тем не менее показывает, что греки в это время уже знали об энергетической природе солнечного света и о ее опасности[670].

Около 100 года н. э. Плиний Младший (61–113) впервые использовал стекло при постройке дома для сохранения тепла; в последующие столетия римские публичные бани всегда проектировались с большими окнами на юг. Римляне также первыми стали строить теплицы. В VI веке император Юстиниан даже ввел закон, защищающий солнечные террасы, публичные и домашние, от возведения вокруг зданий, закрывающих солнечный свет.

Великий персидский ученый Х века Ибн аль-Хайсам (ок. 965–1031) написал значительный труд “О сферических зеркалах”, где, в частности, пересказывал легенду об Архимеде и рефлекторах в Сиракузах как имевшую место; в 1270 году это сочинение перевели на латынь, и оно попалось на глаза Роджеру Бэкону, который предупредил папу римского о том, что сарацины могут использовать вогнутые рефлекторы против крестоносцев в Святой земле. “Идея о преобразовании благотворных солнечных лучей в жестокое военное орудие для сжигания человеческих существ, – пишет об ответе Ватикана Франк Крыза в своей истории солнечной энергии, – воспринималась как извращение и дьявольское наваждение, плод колдовства и сатаны”[671].

По легенде, приблизительно в 212 года до н. э. греческий астроном и математик Архимед использовал зеркала, пытаясь сфокусировать солнечные лучи и поджечь римские корабли (Archive Photos / Getty Images)

В начале XVI века Леонардо да Винчи предложил использовать гигантское зеркало четырех миль в поперечнике в коммерческих целях как источник тепла, а не в качестве оружия. По каким-то причинам – недостаток финансирования или ресурсов (его проект требовал больше стекла, чем тогда существовало!) – из этой затеи ничего не вышло, но сама мысль обозначила смену фокуса с разрушительного использования на практическое, а также подтолкнула солнечные исследования – расцвел интерес к зеркалам и линзам.

В царствование короля Людовика XIV было произведено множество солнечных экспериментов – возможно, вдохновлял их сам Король Солнце. В 1747 году, уже во времена преемника Людовика XIV, Жорж Бюффон (1707–1788) использовал сто сорок плоских зеркал, чтобы зажечь кусок дерева, находящийся в 60 м, доказав тем самым, что подвиг Архимеда был по меньшей мере возможен. Затем наступила индустриальная революция и возникло новое мышление. “В эпоху паровых двигателей казалось, что до овладения энергией Солнца рукой подать… Инженеры XIX века имели дело с достаточно внушительными силами, которые впервые в истории давали им чувство господства над природой, владения инструментами, которые могут изменить условия жизни всего человечества. Почему же не приручить солнечную энергию?” – замечает Крыза[672]. Солнечные насосы, тепловые двигатели и кипятильники были просто побочными продуктами.

В 1830-х во время пребывания в Южной Африке сэр Джон Гершель изобрел актинометр, по сути представлявший колбу с водой, которая при помещении под солнечное излучение позволяла вычислить количество энергии, полученной от Солнца. Позже, как сообщал Стюарт Кларк,

он проводил еще более странные эксперименты. Например, он клал свежее яйцо в жестяную чашку, а сверху – кусок оконного стекла. Возвращаясь позднее с женой и шестью детьми, он, ошпаривая пальцы, доставал уже сварившееся яйцо. Ученый церемонно разрезал яйцо на кусочки и раздавал его окружающим, так что все могли сказать, что ели яйцо, сварившееся вкрутую на южноафриканском солнце. Обнаружив у себя эти неожиданные кулинарные способности, на следующей неделе он приготовил отбивную с картофелем тем же способом. “Она тщательно прожарилась и была очень неплоха”, – записал он в дневнике[673].

Гершель преуспел еще сильнее: он построил солнечную печь из кусков красного дерева, окрашенного в черный, и добился максимальной температуры около 115 °C – на 11 % выше точки кипения воды на уровне моря.

Давнишней целью было произвести пригодный двигатель на солнечной энергии. Попытки построить такую машину предпринимались с начала XVII века, когда Саломон де Косс сконструировал первый прототип, используя линзы, раму и металлический сосуд для воды и воздуха, но в глазах общественности это было скорее курьезом, нежели чем-то практическим. Однако в 1861 году французский учитель математики Огюстен Мюшо налил воды в железное ведро и окружил его солнечными рефлекторами. Вода при испарении произвела достаточный объем пара, чтобы привести в движение небольшой мотор. За четыре года Мюшо смог создать вполне приемлемый паровой двигатель. Когда он продемонстрировал устройство Наполеону III, тот, впечатленный, предложил финансовую помощь. Мюшо смог увеличить объем своей машины, а также оптимизировал рефлектор, превратив его в подобие усеченного конуса вроде тарелки со скошенными внутрь краями. Он также разработал устройство, которое позволяло всей машине постоянно поворачиваться вслед за солнцем. Спустя шесть лет он поразил зрителей своим детищем, которое один репортер описывал как “перевернутый огромный абажур… покрытый изнути очень тонким слоем серебристого металла”, а сам котел находился в середине. как “колоссальный наперсток” из черненой меди, закрытый стеклянным колоколом. На парижской Всемирной выставке в 1878 году Мюшо выставлял печатный пресс, работающий на солнечной энергии, где использовалось параболическое зеркало, паровой двигатель и поршень; солнечная энергия вернулась на мировую выставку только спустя сто двадцать два года – на “Экспо-2000” во Фрайбурге.

Стремясь скорее применить эти изобретения на практике, французское правительство решило, что лучшим полигоном станет Алжир – колония, купающаяся в почти не гаснущем солнечном свете, но полностью зависящая от угля, который был там баснословно дорог. Мюшо с радостью отправился туда. “Рано или поздно промышленности в Европе не хватит ресурсов для удовлетворения своей стремительной экспансии, уголь, безусловно, закончится. Что дальше?” Вскоре Мюшо изобрел портативную солнечную плитку для французских войск, а также солнечный двигатель, который мог приводить в движение печатный пресс. Но высокая стоимость этих изобретений вкупе с растущей дешевизной английского угля вынесла им приговор – индустриальная революция ревела дальше. В те дни ничто не предвещало глобального потепления.

В 1891 году Кларенс Кемп, изобретатель из Балтимора, “настоящий отец американской солнечной энергии”, запатентовал “Климакс” – первый коммерческий водонагреватель на солнечной энергии, который соединял старую практику нагревания металлического контейнера на солнце с научным принципом термостата, увеличивая тем самым их способность к поглощению тепла[674]. К 1897 году, как гордо утверждали биографы, “30 % нагревателей в Пасадене, штат Калифорния, были производены Кемпом”, но это лишь подчеркивало тот факт, что подобные изобретения имели успех лишь в рамках штата. Когда в 1902 году Кемпу удалось с помощью рефлектора из тысячи семисот восьмидесяти восьми отдельных зеркал произвести достаточно энергии для пятнадцатисильного[675]солнечного насоса, чтобы оросить страусиную ферму в Пасадене, об этом сообщалось лишь как об эксцентричном эксперименте.

Европейская традиция выращивания деревьев вдоль фруктовых шпалер насчитывает столетия – это сохраняет солнечный жар, постепенно выпуская его на исходе дня, когда солнце заходит; примерно столько же и использованию парников с южными скатами в Англии и Голландии. Первым коммерческим использованием солнечной энергии, видимо, было выпаривание соли из морской воды, а первым масштабным применением стала дистилляция питьевой воды из солоноватых колодцев или изолированных участков морской воды. Опреснитель, установленный в Чили в 1872 году, более сорока лет производил 6 тыс. галлонов воды в день из 4,7 тыс. кв. м водной поверхности.

Печатный станок Огюстена Мюшо, работающий на солнечной энергии, на Всемирной выставке 1878 года в Париже (The Granger Collection, New York)

История приручения Солнца продолжала развиваться резкими скачками. В конце 1870-х Уильям Гриллс Адамс, мелкий чиновник английской короны в Бомбее, написал получившую несколько премий книгу Solar Heat: A Substitute for Fuel in Tropical Countries (“Солнечное тепло: замена горючему в тропических странах”) и попытался внедрить эти технологии в Британской Индии, но без малейшего успеха. Затем эстафету перехватили французы, а именно инженер Шарль Теллье, “отец охлаждения”, который в 1885-м установил себе на крышу сборщик энергии, похожий на современные солнечные панели. Для производства пара вместо воды он использовал жидкий аммиак, который обращается в пар при более низкой температуре. Будучи выставленным на солнце, такой контейнер вырабатывает достаточное количество газообразного аммиака, чтобы работал водяной насос, способный поднять 300 галлонов воды за дневное время. Но Теллье решил посвятить себя разработке систем охлаждения (в хранении пищи было больше денег), и Франции пришлось распрощаться с развитием преобразования солнечной энергии на своей территории вплоть до ХХ века[676].

Несколькими годами спустя, в 1900 году, бостонский предприниматель Обри Энеас основал первую компанию, занимающуюся солнечной энергией, и начал производить машины на этой энергии, орошающие аризонскую пустыню. В 1903 году он переехал в Лос-Анджелес, ближе к потенциальным клиентам, а уже в следующем году продал свою первую систему за 2160 долларов. Не прошло и недели, как шторм свалил раму котла прямо на рефлектор. Привыкший к неудачам Энеас построил новый насос. Осенью 1904-го хозяин ранчо в Аризоне купил улучшенную модель, но и ее уничтожил шторм, на этот раз сопровождавшийся градом. Стало ясно, что большой параболический рефлектор слишком уязвим, и компания свернула свою деятельность. У Энеаса были последователи (в частности, Генри Э. Уилси, действовавший в Сен-Луисе и Нидлсе (штат Калифорния), который создал систему ночного функционирования машин на тепле, сохраненном в течение дня), но их компании также не смогли принести никакой прибыли.

Несмотря на мрачные истории, изобретатели продолжали считать, что, если обнаружить правильную технологическую комбинацию, можно будет производить энергию без ограничений. Одним из тех, кто разделял эту мечту, был инженер из Бруклина Фрэнк Шуман (1862–1918). Его первый солнечный двигатель, построенный в 1897 году, показал себя не очень хорошо, поскольку даже при значительном давлении пар производил недостаточное усилие. Вместо того чтобы попытаться произвести больше тепла, Шуман заменил трубы котла на плоские металлические контейнеры, похожие на контейнеры Теллье, и разработал дешевые рефлекторы – два соединенных ряда зеркал, удваивающих объем улавливаемого солнечного света. Кроме того, он сконструировал крупнейшую на тот момент систему преобразования энергии, способную выдавать 55 лошадиных сил и питающую водяной насос, перекачивающий около 12 тыс. л в минуту, по цене в 150 долларов за лошадиную силу. Для сравнения, обычная система на угле стоила 80 долларов за одну силу. Шуман полагал расходы вполне приемлемыми, учитывая, что вложения быстро окупятся из-за бесплатного горючего. Еще одной причиной, по которой он не слишком беспокоился о высокой цене энергии, вырабатываемой его машиной в сравнении с угольными или нефтяными двигателями, было то, что, как и другие французские предпиниматели, он планировал использовать свое изобретением в огромной, залитой солнцем Северной Африке.

В 1912 году в Египте, некогда центре солнцепоклонничества, он начал работу над первой в мире солнечной электростанцией. Местом был выбран пригород Маади, в 15 милях к югу от Каира; предметом гордости были семь вогнутых отражателей, 60 м в диаметре каждый, а также паровой двигатель в тысячу лошадиных сил. Но все закончилось не начавшись. Через два месяца после финальных испытаний был убит эрцгерцог Франц Фердинанд и началась Первая мировая война. Инженеры, работавшие на шумановской станции, вернулись каждый на свою родину для выполнения разнообразных военных заданий, а сам Шуман умер еще до наступления перемирия. После конца войны с падением цен на нефть интерес к солнечным экспериментам в очередной раз испарился.

К тому времени нефтяные и угольные компании развили серьезные инфраструктуры, имели стабильные рынки и богатые запасы углеводородного горючего. Пионеры солнечной энергии, напротив, еще только пытались совершенствовать свою технологию и сталкивались с дополнительной трудностью убеждения скептиков в том, что солнечная энергия была чем-то большим, чем просто курьез. Обнаружение огромных залежей природного газа в бассейне Лос-Анджелеса в 1920-е и 1930-е уничтожило на корню всю местную индустрию солнечных водонагревателей. Георгий Гамов в 1940-м мог пренебрежительно комментировать: “Прямое употребление солнечного тепла… используется только в нескольких хитроумных устройствах – в холодильниках, которые охлаждают напитки в аризонской пустыне, и в нагревателях воды в публичных банях в восточном городе Ташкенте”[677]. Некий всплеск интереса к солнечным водонагревателям произошел во Флориде, к 1941 году в Солнечном штате их использовалось около 6 тыс. штук. Бестселлер Yo u r Solar House (“Ваш солнечный дом”, 1947), куда вошли работы сорока семи архитекторов, отражал реальный спрос. Однако после Второй мировой войны электрическая компания Florida Power and Light вела агрессивную кампанию по увеличению потребления электричества и предлагала электрические водонагреватели по бросовым ценам. Солнечной энергии опять пришлось отступить.

Такая же ситуация была повсюду. В Японии, где выращивающим рис фермерам остро требовалась дешевая горячая вода, одна компания начала продвигать простой нагреватель, сделанный из резервуара, накрытого стеклом, и к 1960-м в ходу их было уже более сотни тысяч, но индустрия рухнула из-за изобилия дешевой нефти, так же как это случилось в Калифорнии и Флориде. Даже в Австралии с ее богатым солнечным освещением нагревательные устройства, работающие на солнце, исчислялись всего несколькими тысячами. В Израиле в первое время после основания электричество было нормированным, поэтому люди стремились удовлетворить свои нужды другими способами, и к середине 1960-х одно домохозяйство из двадцати человек имело солнечный водонагреватель; но затем дешевая нефть с промыслов, захваченных во время Шестидневной войны, вновь отодвинула солнечную энергию на вторые роли.

Вращающийся солярий в Экс-ле-Бен, Франция, сентябрь 1930 (Fox Photos / Hulton / Getty Images)

В Соединенных Штатах первое офисное здание, отапливаемое солнечной энергией, было построено в начале 1950-х, затем появились первые дома, отапливаемые солнцем и им же охлаждаемые (цена такой модификации доходила до 4 тыс. долларов – около 30 тыс. в сегодняшних деньгах), а некоторые компании вновь принялись производить солнечные элементы и водонагреватели. В 1953–1954-м исследователи в Bell Laboratories (сегодня входящих в AT&T) сделали удивительное открытие, основанное на старой технологии. В 1839 году французский физик Александр Эдмон Беккерель установил, что, если два электрода погрузить в кислоту и пустить ток через один из них, ток пойдет и через второй. В 1873 году британский инженер Уиллоуби Смит обнаружил, что элемент селений меняет электрическое сопротивление под воздействием солнечного света, но ему не удалось достичь эффекта хоть сколько-нибудь значительного уровня. Сотрудники Bell Labs, экспериментируя с различными материалами, обнаружили, что кремний обладает тем же свойством, только в пятикратном размере, так что самым эффективным методом конвертации солнечных лучей в электричество оказалось использование кремниевых фотоэлектрических пластин.

Bell Labs вскоре начали производить тонкие пластины сверхчистого кремния с небольшими добавками мышьяка и бора для улучшения проводимости. При попадании солнечных лучей на пластину электроны кремния вышибаются проникающим теплом и перемещаются ближе к поверхности пластины, создавая дисбаланс между передней и задней частями элемента. Если верхняя и нижняя поверхности соединены проводником – обычно просто металлическим проводом, – то по нему начинает идти ток. “Солнечный элемент в целом гораздо более простая структура, чем зеленый лист, – пишет химик Мэри Арчер (жена популярного романиста Джеффри Арчера), – но напоминает лист тем, что одна из его сторон адаптирована для приема солнечного света”[678].

New York Times провозгласила открытие Bell Labs “началом новой эры, которые в конечном итоге приведет к… приспособлению почти безграничной энергии Солнца к нуждам цивилизации”. В самом деле, произошли значительные изменения: при ярком солнечном свете уровень конверсии энергии достигает высокого показателя в 22 %. Но даже с учетом этого фотоэлектрические пластины все еще не были экономически целесообразны, их стоимость достигала 300 долларов за киловатт (2200 в долларах 2010 года). Но тогда было время космической гонки, и правительственный бюджет на разработку солнечных батарей взлетел до небес, как только стало ясно, что спутники таким образом смогут вырабатывать электроэнергию, которая не требует возобновления. В 1958 году первый спутник с солнечными батареями, Vanguard 1, был выведен на орбиту. За последующие десятилетия цены резко упали, в среднем на 4 % в год за последние пятнадцать лет.

Фотоэлектрические элементы защищают трубопроводы от замерзания, они питают свет, радио, придорожные телефоны экстренной помощи, холодильники, кондиционеры, водяные насосы и деревенскую электрификацию. Они встречаются даже в самых мелких устройствах – карманных калькуляторах и часах, зарядках для iPod, камерах и автомобильных зеркалах. В 2003 году около половины фотоэлементов производились в Японии[679], на Соединенные Штаты приходилось примерно 12 %. В 1985 году мировая годовая потребность находилась на уровне 21 мВт (21 млн ватт), в 2005-м – 1,501 мВт: рост более чем на 7000 %.

Всего за пять лет у меня собралось около десятка книг и более ста сорока статей на эти темы, и я понял, что различные инициативы в области солнечной энергии возникают в постоянно растущем количестве повсюду, от Китая до Танзании, от ЮАР, где светофоры на солнечных батареях спасают движение от капризов слабой электросети, до Абу-Даби, столицы Объединенных Арабских Эмиратов, которые, несмотря на свою репутацию нефтяной столицы мира и главного же источника CO2, планируют построить исследовательский центр и пятисотмегаваттную солнечную электростанцию. Возникает вопрос: как далеко зашла эта революция?

В 2004 и 2006 годах я предпринял два путешествия, чтобы ответить себе на этот вопрос. Первым пунктом моего назначения стал Фрайбург, город с населением около 215 тыс. человек в земле Баден-Вюртемберг между Черным лесом и долиной Рейна. Он очень сильно пострадал во время Второй мировой войны: в 1940 году немецкие самолеты по ошибке сбросили шестьдесят бомб около железнодорожного вокзала, а в ноябре 1944-го воздушный рейд союзников уничтожил 80 % старого города. Но это означало, что после 1945 года началась масштабная программа реконструкции, и в последнее время Фрайбург привлек множество игроков индустрии солнечной энергии и исследований; ни в одном другом немецком городе нет такого количества предприятий и лабораторий, связанных с окружающей средой. С учетом этого, а также того факта, что это самый солнечный город страны, неудивительно, что Фрайбург гордо носит звание экологической столицы Германии.

В специальном центре солнечной энергии SolarRegionFreiburg[680] я встречался с тремя экспертами: Франциской Брайер, подтянутой блондинкой лет тридцати, лесником по профессии; Томом Дрезелем, социологом и публицистом, обозревающим “солнечные” проекты; Отто Вербахом, директором городского планетария. Фрау Брайер объяснила, что “все началось буквально случайно”. “В пятнадцати километрах отсюда находится деревушка Виль, около которой в начале 1970-х планировалось построить атомную электростанцию. Студенты, фермеры и виноделы (у нас винодельческий район) организовали сидячий протест, а строительная площадка была превращена в дискуссионный центр. В конце концов планы были отозваны, но в адрес протестующих прозвучало: “Вы не хотите атомной энергии – прекрасно, но что вы предлагаете взамен? Против быть легко, попробуйте выступить с конструктивным предложением”. И это заставило людей задуматься”.

Первые робкие шаги по направлению к солнечной энергии начались в 1976 году, а в 1981-м во Фрайбурге был основан Институт систем солнечной энергии Фраунгофера. В свое время Институт вызывал насмешки в научном сообществе, в глазах которого он недалеко ушел от энтузиазма бунтующих хиппи, но сегодня это крупнейший центр такого рода в Европе, в нем работает более трехсот пятидесяти человек. Его успех во многом обязан меняющейся политической реальности. В 1983 году, впервые за тридцать лет, новая политическая партия набрала 5 % голосов, необходимых по избирательному праву Западной Германии для получения мест в федеральном парламенте – зеленые (Die Gr?nen) вошли в бундестаг. Эти фотокадры обошли весь мир: бородатые длинноволосые депутаты без галстуков сидели в парламенте рядом с канцлером Колем. Успех зеленых наэлектризовал жителей Фрайбурга, и началось развитие целой “солнечной” экономики. В 1992 году городской совет разрешил возведение на муниципальной земле только зданий с низким потреблением энергии. В дополнение к солнечным панелям и сборщикам света на крыше стали популярны многие пассивные функции – высококачественная изоляция, ориентированные на юг окна с низкоэмиссионным стеклом, изоляционные пеноблоки. “Будущее начинается каждый день, – говорит Дрезель. – Можно наблюдать развитие города шаг за шагом”.

В 1945 году город находился в зоне французской оккупации. В конце 1990-х на месте бывшей французской военной базы началось строительство Вобана (названного в честь французского маршала XVII века) – нового жилого района на 6 тыс. человек, призванного стать “моделью экологически чистого района”. Солнечная энергия используется там для подогрева воды в большинстве домов, а сам район разработан в соответствии с принципами экологии. “Дорога к экологии вымощена инновациями”, – улыбается фрау Брайер. Очевидным образом Вобан функционирует.

Мы вчетвером разговарили почти два часа, а затем я отправился на прогулку по городу. На первый взгляд он напоминал средний университетский город – преуспевающий, чистый, наполненный студентами. Но постепенно я стал замечать и инновации. На окраине поверх давно заброшенного серебряного рудника сейчас построена солнечная обсерватория. Пять ветряных турбин в пределах города удвоили долю возобновляемого электричества в структуре потребления. К концу моей прогулки я насчитал тридцать разных объектов: технологический парк, несколько солнечных электростанций, отель с “нулевыми выбросами”, железнодорожная станция с солнечной электростанцией башенного типа, множество домов с панелями солнечных батарей на крышах. Постройки тридцатилетней давности подверглись редизайну в целях адаптации их под “солнечные” нужды (с финансированием от сберегательных и заемных институций), а частные компании и общественные службы подготовили крыши для солнечных модулей. Местные жители приобрели доли в панелях, получая возмещение по мере продажи электроэнергии городской сети. Совокупная площадь фотоэлектрических панелей на крышах Фрайбурга составляет около 70 тыс. кв. м, и благодаря специально запрограммированным солнечным сканерам эти панели подстраиваются под солнце каждые 12–15 мин, чтобы поглощение было максимальным. В городе также появилось первое в мире полностью автономное от каких-либо энергетических сетей здание, получающее всю энергию прямо от солнца. В школах есть свои “солнечные” образовательные центры и солнечные электростанции, и это все в стране, которая в среднем имеет только тысячу пятьсот двадцать восемь солнечных часов в год.

“Фрайбург задает тон остальным немецким городам”, – говорит Франциска Брайер. Например, Гельзенкирхен, стоящий на северной части Рейна, был важнейшим угольным и стальным центром Европы в начале XII века – “городом тысячи печей”. Сегодня он переосмысливает себя как “город тысячи солнц”, заимствуя многие инновации Фрайбурга. “Наши нововведения могли бы позаимствовать и Китай, и обе Кореи”. Кстати, у Пекина с Фрайбургом уже есть одна общая черта – велосипедов в два раза больше, чем автомобилей. Но причины разные. В Пекине велосипед является основным видом транспорта, тогда как во Фрайбурге езда на велосипеде символизирует экологическое мышление. Скоро студенты будут подкатывать к университету на мотоциклах на солнечной энергии, это только вопрос времени, убедили меня.

Следующей целью моего путешествия был город Альмери?я в южной Испании. Там я оказался два года спустя, в июле 2006-го. Всего в часе езды от города находится Табе?рнас – единственная сохранившаяся в Европе песчаная пустыня. Кроме того что на этой земле солнце нещадно палит триста пятьдесят пять дней в году, она еще и идеально подходит для киносъемок: там снимались такие фильмы, как “Паттон”, “Великолепная семерка”, “Ветер и лев”, “Индиана Джонс и последний крестовый поход” и “Лоуренс Аравийский”. Там же снималась знаменитая “долларовая” трилогия спагетти-вестернов Серджо Леоне – “За пригоршню долларов”, “На несколько долларов больше”, “Хороший, плохой, злой”. Но этот успех не приносил процветания Альмерии. К началу 1970-х этот район был самым бедным во всей Испании. И вдруг там обнаружились огромные объемы грунтовых вод. Началась сельскохозяйственная революция. Возникли сотни теплиц, пользующиеся преимуществами доступной воды и ежедневного солнечного освещения (“Солнце проводит зиму в Альмерии”, – гласит поговорка: среднегодовая температура там составляет 17 °C); местные жители вскоре стали хвастаться тем, что из космоса видно не Великую Китайскую стену, а их парники – огромное море пластика. К концу века город стал одним из самых богатых в южной части Испании, туда в массовых количествах стали прибывать иммигранты[681].

Этот период частично совпал с нефтяным кризисом 1970-х, а уже в начале 1980-х Международное энергетическое агентство при участии девяти стран установило в этой области небольшую электростанцию для проведения испытаний двух разных установок солнечной энергии. Одна состояла из целого поля (девяноста штук) контролируемых компьютером зеркал (гелиостатов), которые следили за солнечными лучами и собирали их пучком на центральной башне, где их энергия преобразовывалась в тепловую; другая – из трех полей вогнутых рефлекторов, которые также следовали за солнцем и отражали его энергию на металлические трубы, заполненные маслом. Эти трубы медленно нагревались до 290 °C, а масло направлялось в парогенератор. Потом добавился и третий проект, уже целиком испанский: центральная башня, снабженная тремястами гелиостатами, отражающими концентрированное тепло на черные поглощающие панели на верхушке башни с его дальнейшей передачей на водяной / паровой приемник и систему теплохранения из контейнеров с солевым расплавом. Расчет был на то, что хотя бы один проект окажется коммерчески состоятельным, но к концу 1980-х все партнеры Испании разочаровались из-за отсутствия какого-либо прогресса и вышли из проекта, осталась только Германия. Начиная с 1999 года лишь один проект продолжил развиваться, но зато он процветал. Plataforma Solar de Almer?a (PSA) с тех пор стала крупнейшим научно-исследовательским центром по солнечной энергетике в Европе (в мире с ней соперничают только Институт Вайцмана в Израиле, Sandia Laboratories в Альбукерке, Нью-Мексико, и 2 тыс. гигантских зеркал в пустыне Мохаве под городом Барстоу, Калифорния).

Одним из первых уроков, который я усвоил в Альмерии, был следующий: концентрация солнечной энергии и фотоэлектрические панели представляют совершенно разные технологии. В панелях солнечные фотоны используются для возбуждения электронов и создания тока, в то время как в термальной солнечной энергии, в использовании которой пионером стала Альмерия, фотоны служат для нагревания молекул жидкости. Для этого энергетического перехода требуются длинные металлические зеркала, фокусирующие солнечный свет на трубах, а воду нужно прогонять через теплообменник, генерирующий пар для вращения турбины. Поскольку весь этот процесс требует большой площади и обилия солнечного света, его идеальным местоположением оказывается высушенная солнцем пустыня.

Моим провожатым по территории стал Хосе Мартинес Солер, бодрый сотрудник проекта тридцати с небольшим лет, заканчивающий диссертацию о маркетинге солнечной энергии. Он с гордостью известил меня, что PSA вскоре отметит свое двадцатипятилетие, а также сообщил, что две испанские компании смогли найти коммерческое применение некоторым исследованиям научного центра. Город вроде Фрайбурга не может вырабатывать слишком много тепла из солнечного света, но высокотехнологичные кремниевые панели и посеребренные зеркала в Альмерии могут усиливать солнечный свет до температур, тысячекратно превышающих его начальный уровень (пока Хосе объяснял мне это, мы проходили мимо двери с табличкой: “Опасно, концентрированный солнечный свет”).

Увиденное впечатлило меня, но не смогло убедить в том, что солнечная энергия может сделать значительный вклад в мировые энергетические потребности. Я также встретился с Альфонсо Севильей Портильо, местным экспертом по вопросам энергетики и первым директором PSA. Пятидесятилетний элегантный мужчина, Портильо категорически не поддерживает стратегию своей бывшей компании. PSA разрабатывает технологию для продажи, тогда как “нам надо формировать потребление. Если мы будем продолжать жить так, как живем, мы никогда не сможем обеспечить энергией все свои потребности”. Научное исследование солнечной энергии должно быть составной частью общей жизненной философии, говорит он. Доктор Севилья оставил PSA и перешел на работу в новый проект в Кронсберге, под Ганновером, где около 6 тыс. жилых блоков, вмещающих 15 тыс. человек, образуют пять компактных кварталов. Городок будет использовать на 40 % меньше энергии, сохранив при этом тот же уровень жизни.

Ведет ли эта дорога в будущее? В то время как в прошлом изобретателей по большей части интересовали научные и философские аспекты “ловли солнца”, сегодняшний энтузиазм исследователей происходит из страхов, связанных с глобальным потеплением и истощением запасов естественного топлива, а также тем, что основные месторождения нефти находятся в политически нестабильных регионах, таких как Персидский залив, Нигерия и Венесуэла. Источники энергии ископаемого топлива могут прибавляться – газолин, керосин, пропан, – но и техники по преобразованию альтернативных форм энергии также множатся: солнечная энергия, ядерное расщепление и термоядерный синтез, энергия ветра, волн, переработка биоматериала (мертвые растительные и животные ткани преобразуются в этанол, биогазовое и биодизельное топливо). Почти каждый день в газетах появляется новая история о таких альтернативах, но не каждая из них реализуема. Как замечали скептики о энергии ветра, “со времен Дон Кихота ветряные мельницы не порождали столько иллюзий”[682].

Хирам вам позже перезвонит. Он возится с нашими солнечными панелями.

Но даже самые фантастические идеи могут превращаться в реальность. В 1980-е великий фантаст Артур Кларк утверждал, что мы сможем получать электричество из океана в неограниченных количествах и без “огромной массы вращающихся машин”. Он конкретизировал свою идею в The Shining Ones (“Сверкающих”), где использовались тепловые двигатели, “работающие на термальном перепаде между теплыми поверхностными слоями и ледяными глубинными водами”[683]. В действительности Pelamis, змееподобная машина длиной в 150 м (почти с пассажирский поезд), сегодня генерирует электроэнергию из поглощаемой энергии волн, а горизонтальные турбины, смонтированные на морском дне, работают по принципу подводных ветряков. Одна только Великобритания может генериров ать до 20 % требуемой электроэнергии из волн и приливов[684].

Гелиос, прототип летающего крыла, парящего на солнечной энергии над Гавайями, июль 2001-го Первый испытательный полет продлился 18 ч (Nick Galante / PMRF / NASA)

В 1981 году аэроплан на солнечной энергии впервые пролетел над Ла-Маншем, а сейчас часовая компания “Омега” разрабатывает летательный аппарат, который сможет облететь земной шар на солнечной энергии (запасая ее в литиевых батареях, расположенных на крыльях). В марте 2007 года швейцарское судно sun21 пересекло Атлантику за шестьдесят три дня; сегодня в рамках исследования космоса планируется испытание аппарата, получающего энергию посредством гигантского солнечного отражателя. Тем временем ученые, обслуживающие знаменитую крупнейшую в мире солнечную печь в Фон-Роме-Одейо в Пиренеях, смогли добиться от концентрации солнечного света температуры в 3500 °C. В городе Удайпуре местный махараджа ввел рикши на солнечной энергии. А последние несколько десятилетий инженеры работают над автомобилями на солнечной энергии, и, хотя до коммерческого применения пока далеко, каждые два года в Центральной Австралии на 3000-километровой трассе от Дарвина до Аделаиды устраиваются соревнования таких машин[685]. У гибридов типа Volkswagen Eos (названного в честь греческой богини зари) и французского Venturi Eclectic имеется убирающаяся крыша с солнечными батареями. Но солнечный свет не может дать энергии больше чем на 23 км в день, и автомобиль должен быть крайне легким и аэродинамичным, рассчитанным только на водителя.

В изобретательности нет недостатка, куда ни глянь. В мае 2009 года модный журнал Visionaire сделал “солнечный” номер с черно-белой обложкой, чье фотохромное покрытие расцветало полноцветным спектром под солнечными лучами. Solio, портативное зарядное устройство размером с мобильный телефон, разворачивает фотоэлектрический трилистник для улавливания солнечных лучей, энергию которых оно может затем направить в мобильный телефон, наладонные компьютеры, игровые приставки или плееры. Такие персональные устройства могут подключаться и к спортивным сумкам или “солнечным курткам” (сделанным из специального материала – микротина), у которых небольшие пластины вшиты в съемный воротник[686]. Мусорные баки, установленные на американских пляжах, имеют фотоэлементные сенсоры, которые отправляют сообщение в коммунальный департамент, когда контейнер заполняется на три четверти. Химики пока еще работают над производством краски, которая могла бы преобразовывать солнечный свет прямиком в электричество, но ученые Национальной лаборатории в Айдахо уже в 2008 году изобрели пластик, который делает ровно это: Solar Skin (“солнечная кожа”) представляет из себя тонкую пленку из полупроводника (селенида меди – индия – галлия), которую можно нанести непосредственно на стекло или металл. Также разработана самовосстанавливающаяся краска для автомобилей и мебели, которая устраняет повреждение покрытия за несколько минут под воздействием солнца.

Если посмотреть в более крупном масштабе, то инженеры в Нью-Джерси запатентовали устройство для переключения государственной электрической сети с обычной энергии на солнечную в течение нескольких секунд после отказа первой. Солнечные печи сегодня способны печь шестьсот блюд дважды в день[687]; метан, образующийся на мусорных свалках, продается как источник энергии; разрабатываются биосистемы, где можно было бы использовать облучаемые солнцем водоросли для преобразования СО2 и воды в кислород и богатые протеином углеводороды и в конечном итоге в топливо.

Утверждается, что медленное осевое вращение Луны, отсутствие атмосферы и избыток строительного материала благоприятствуют возведению на поверхности нашего спутника установок для сбора солнечной энергии. Эта энергия, собранная посредством сотен лунных панелей, обеспечивала бы бесперебойное питание всевозможным космическим аппаратам, а в конце концов и землянам[688]. Еще одна альтернативная энергетика, космическая, подразумевает запуск спутников, снабженных большими фотоэлектрическими поверхностями, которые будут расправляться (или надуваться, технология пока находится в стадии эксперимента), когда спутник ляжет на орбиту. В ближнем космосе солнечный свет примерно в восемь раз интенсивней, чем на поверхности Земли, но полномасштабные испытания этой программы еще не проводились, а попытка запустить в 2005 году первый аппарат с солнечным парусом, Cosmos 1, провалилась[689].

Все эти инициативы делают довольно сложной задачей оценку прогресса в области солнечной энергетики – в конце концов, в первые годы администрации президента Рейгана энтузиазм правительства в отношении солнечной энергии заметно поубавился одновременно с исчезновением солнечных панелей, которые Джимми Картер велел установить на крыше Белого дома. Рейган также урезал бюджет Института исследований солнечной энергии и позволил свернуть налоговые льготы на возобновляемые источники энергии. Дело было не только в Рейгане: между 1980-м и 2005-м доля всех расходов США на научные исследования по энергетике упала с 10 до 2 %, а бюджет 2007 года выделял на исследования по солнечной энергии всего 159 млн долларов, половину от бюджета на ядерную энергию (303 млн) и треть от бюджета на угольную (427 млн). В конце 2009 года в Конгресс США поступил законопроект, согласно которому предполагалось законсервировать тринадцать солнечных и ветряных электростанций, запланированных к развертыванию в пустыне Мохаве в Калифорнии, “вероятно, самой солнечной земле в мире”, по словам одного эколога. В мире, ожидающем прироста населения на 2,5 млрд человек к середине столетия, государственные и корпоративные инвестиции в энергетику сокращаются, а не растут[690].

Важный момент – насколько долго будут продолжаться ассигнования: любые “солнечные” проекты в большой степени поддерживаются налоговыми льготами, грантами и программами, в рамках которых энергетические компании должны возмещать средства абонентам, направляющим энергию от своих солнечных приспособлений в государственные энергосети. Но, например, в Дании, где 17 % электричества поступают от ветряных турбин, новые проекты были практически полностью заморожены, когда дотации пали жертвой изменчивых политических приоритетов. В Испании, где правительственное финансирование щедрее, чем где-либо в Европе, в 2008 году была принята программа сокращения расходов. Другие страны, скорее всего, последуют той же дорогой: в октябре 2009 года компании – импортеры солнечных панелей в США понесли 70 млн долларов расходов по причине неожиданно выросших тарифов.

В Германии также происходят политические стычки на этой почве (консерваторы утверждают, что субсидии на солнечную энергию растут так быстро, что это вскорости начнет влиять на счета за электричество). Несмотря на столкновения на почве субсидий, страна продолжает оставаться лидером в области солнечной энергетики: пятнадцать из двадцати крупнейших мировых электростанций находятся в Германии[691], они производят 750 мВт энергии, что в пять раз превышает аналогичную цифру в США за 2006 год. Японцы не сильно отстают – 1,5 млн строений в Токио имеют солнечные водонагреватели, это больше, чем во всех Соединенных Штатах. В январе 2010 года сообщалось, что Китай, не занимавший никакой доли в индустрии еще пять лет назад, неожиданно перегнал Японию и Запад, став крупнейшим производителем солнечных батарей на земном шаре. Такими темпами уже скоро Китай будет производить больше половины мирового продукта, а также станет ведущим производителем ветряных турбин[692].

В 2005 году в Испании был принят закон о том, что все новые жилые помещения должны иметь устройства для вырабатывания солнечной энергии. Израиль использует солнечные водонагревательные системы в 30 % построек, а в новых домах они обязательны. Китай принимает сходные меры, а Швеция планирует полностью отказаться от энергии ископаемого топлива[693]. Солнечные электростанции строятся в Мексике, ЮАР, Египте, Алжире и Марокко. Несколько американских штатов законодательно защитили “право на свет” для городских парков – запоздалый поклон Юстиниану[694], – а Калифорния, где возникла программа “Миллион солнечных крыш”, в одиночку производит 54 % мировой ветряной энергии. Десять лет назад только на пятистах крышах в Калифорнии стояли солнечные панели; сегодня таких установок уже почти 50 тыс., и они обеспечивают энергию, эквивалентную энергии большой электростанции.

Сравнительно новым явлением во всем мире стала теплоизоляция посредством съемных панелей на крыше. Этот конструктивный элемент стал частью домовой архитектуры только в 1980-е, по инициативе замечательного американского инженера Гарольда Хэя. Хэй был в Индии с делегацией американского правительства в 1950-е и заметил, что многие живут в заржавленных лачугах из листового железа, которые страшно нагреваются днем и остывают ночью. Он разработал кровельные панели, которые можно было снимать днем и ставить обратно ночью (в зимние месяцы) либо наоборот – в летний период. Одна простая идея сыграла важную роль для сотен тысяч индийских домов. В 1976 году Хэй дал прозорливый совет:

Мы средиземноморское, а вовсе не всесезонное животное. Мы принадлежим умеренным зонам Земли… но наша технология сделала возможным нагревание арктических областей планеты и охлаждение тропиков в достаточной мере, чтобы нам там было комфортно. В определенном смысле весь энергетический кризис состоит в этом. Мы научились использовать энергию для создания себе комфортных условий в областях, к жизни в которых мы физически не приспособлены… Мы можем использовать солнечную энергию и даже злоупотребить ею[695].

Проповедники перехода на солнечную энергию осторожны с выводами, но указывают на то, что стоимость начала снижаться. “Тридцать лет назад солнечная энергия была экономически эффективной для спутников, – говорит Дэниел Шугар, президент калифорнийской SunPower Systems, – сегодня она становится рентабельной уже для домов и предприятий”[696]. Рынок, в 2007 году оцениваемый в 11 млрд долларов, растет более чем на 25 % в год. Но, несмотря на это, солнечные панели до сих пор относительно дороги.

Данный текст является ознакомительным фрагментом.