Глава 9 Земля движется

We use cookies. Read the Privacy and Cookie Policy

Глава 9

Земля движется

В середине всего находится Солнце. Действительно… кто мог бы поместить этот светильник в другом и лучшем месте… Ведь не напрасно некоторые называют Солнце светильником мира[225].

Николай Коперник

Рассказывают о новом астрологе, который хочет доказать, будто Земля движется и оборачивается вокруг себя, а не небо, Солнце и Луна… Этот глупец хочет перевернуть все искусство астрономии[226].

Мартин Лютер

Будучи подростком, Граучо Маркс[227] взял на себя ответственность за обучение своих братьев и однажды спросил у Харпо, старшего брата, какой формы наш мир. Харпо признался, что не очень знает. Тогда Граучо подсказал ему: “Какой формы мои запонки?” – Квадратные, – был ответ.

– Я имею в виду воскресные запонки, не на каждый день. Ну, скажи теперь, какая форма у Земли.

– По воскресеньям круглая, а по будням квадратная, – отвечал Харпо, вскоре после этого принявший сценическое амплуа немого[228].

Эта история насчитывает много лет, а сам вопрос – еще больше. Какой формы наш мир? В I веке н. э. Плиний Старший заключил, что Земля имеет форму шара, но у него была и запасная теория о “шишковидной форме”. Эрудит Исидор Севильский также объявил наш мир круглым, но при этом плоским, как колесо. Беда Достопочтенный считал мир сферическим, но не мог себе представить людей-антиподов на противоположной стороне шара. Эти мудрецы были одиноки в своих воззрениях, поскольку с V до конца X века Европа пребывала в уверенности о прямоугольной форме мира; ортодоксальная картография помещала в центр мира Иерусалим. Но когда в 999 году астроном Герберт стал папой Сильвестром II, он сделал сферу Плиния Старшего официальной доктриной церкви. В 1410 году появление Птолемеевой “Географии” на латыни подтвердило уже распространенную идею о круглом мире, а к концу столетия в связи с плаванием Колумба на поиски Индии мореплаватели и ученые также приняли модель сферической Земли, хотя и не знали ее размеров. Пришлось смениться еще многим поколениям, чтобы показать, что вращение планеты образует выпуклости на экваторе, так что сфера все-таки не идеальна[229].

Но где находилась наша планета по отношению к остальной вселенной? “Массы, – писал Уильям Манчестер, – продолжали верить, что наш мир был неподвижным диском, вокруг которого вращалось Солнце, а весь остальной космос состоял из рая, блаженно раскинувшегося над небесами и населенного херувимами, и ада, пылающего глубоко внизу под почвами Европы. Все верили в это и даже буквально знали это”[230]. Не совсем так – все большее число астрономов обнаруживали, что геоцентрическая модель вселенной не во всем сочетается с фактами. Мусульмане и христиане могли бесконечно пересматривать “Альмагест”, но ни один из вариантов прочтения не позволял рассчитать положение планет так, чтобы расчеты совпали с наблюдаемым, учитывая постоянно растущую точность наблюдений. Не то чтобы никто не мог догадаться: за четыреста лет до Аристарха Самосского (который выдвигал идею гелиоцентричного космоса) философы из северной Индии утверждали, что если Солнце – крупнейший объект в космосе, а сила тяжести удерживает космос воедино (а они считали верным и то и другое), то оно обязано быть в центре космоса. Были и другие: в начале XI века аль-Бируни пришел примерно к тем же заключениям, а немецкий теолог Николай Кузанский (1401–1464) уже размышлял о такой возможности. Но до изобретения печатного пресса и в отсутствие кого-либо, кто мог бы записать данные мысли, все это оставалось домыслами, быстро исчезающими с горизонта науки.

Когда в 1450 году Иоганн Гутенберг наконец изобрел наборный шрифт, эти теории смогли не только запечатлеться на бумаге, но и широко распространиться. Ученые получили возможность собирать частные библиотеки с доступом к одним и тем же печатным текстам, которые можно было обсуждать с коллегами в письмах независимо от расстояния. К началу XVI века типографии имелись в каждом крупном западноевропейском городе, суммарные тиражи достигали 6–9 млн экземпляров, а число наименований книг составляло более 35 тыс.

В 1465 году тридцатилетний астроном из Кенигсберга, Бавария, Иоганн Мюллер (1436–1476) начал писать сам и заказывать на стороне работы по астрономии вместе с альманахами и таблицами. Эти книги и статьи оказались крайне популярны, учитывая спрос на методы, помогающие в навигации и освоении новых земель, а также вечный интерес к астрологии. Через пять лет Мюллер обосновался в Нюрнберге, у него уже была собственная обсерватория и своя типография, а концу века каждое мало-мальски значимое сочинение по астрономии стало доступно на всем Западе.

И в этот момент на сцене появился Николай Коперник (1473–1543), скромный клирик из Восточной Пруссии, входившей тогда в Польское государство. Во время десятилетней учебы в Болонье и Падуе он также заинтересовался теориями космических сфер и, как и многие, столкнулся с тем, что приходилось вносить массу поправок, чтобы сгладить ошибки Птолемея[231]. Почему Меркурий и Венера никогда не удалялись далеко от Солнца, а Марс, Юпитер и Сатурн временами начинали двигаться в обратную сторону? Коперник был вынужден обратиться к идее гелиоцентрической системы, которая гораздо лучше соотносилась с действительностью, чем система Птолемея, хотя все еще была несовершенной: Коперник, как и другие, продолжал исходить из того, что орбиты планет имели форму окружности, а не эллипса. Земля стала одной из планет – он гнал эту идею прочь как абсурдную, но она упорно возвращалась.

В тридцать он вернулся в дом своего дяди-епископа (“на краю земли”, как он сам недовольно выражался), где построил простую обсерваторию в одной из башен окружающей собор стены. Следуя инструкциям “Альмагеста”, он соорудил такие же грубые деревянные приборы, которыми астрономы пользовались веками, и проводил ночи за наблюдением звезд. Около 1514 года он напечатал и начал распространять свое сочинение, позже названное учеными De hypothesibus motuum coelestium a se constitutis commentariolus, или “Малый комментарий”, где излагал свое видение гелиоцентрической системы и спрашивал мнения у друзей и ученых коллег. В это время католическая церковь преисполнилась большого энтузиазма по поводу учености и поощряла оригинальные научные исследования, если они открыто не восставали против ее доктрины. Когда папа Лев X отреагировал положительно, а либеральные члены курии тоже дали понять о своем одобрении, Коперник стал планировать публикацию более существенного сочинения. Можно было бы ожидать, что и первоначальный набросок был достаточно противоречивым, но на этой стадии официальные инстанции никак не намекали на грядущую бурю.

В 1532 году новая система Коперника была впервые представлена ни много ни мало личным секретарем папы перед узким кругом приглашенных в Ватиканских садах. Секретарь хорошо подготовился, слушатели было приятно впечатлены. Коперник начал путь к славе, еще ничего не опубликовав. И тем не менее он долго колебался – отчасти потому, что он не мог найти никакого прямого доказательства вращения Земли (не говоря уж о вращении вокруг Солнца), а отчасти потому, что подозревал протестантов с их буквальным прочтением Библии в гораздо более критичном отношении, чем отношение ватиканских друзей. Прошло более тридцати лет со времен “Малого комментария”, прежде чем он разрешил включить фрагмент сочинения, над которым работал, в книгу по тригонометрии[232]. В полном виде сочинение De revolutionibus orbium coelestium (“О вращении небесных сфер”) вышло в 1543 году тиражом несколько сотен экземпляров, двести двенадцать страниц формата фолио. К тому времени стареющему канонику было семьдесят, он страдал апоплексией и был наполовину парализован. Легенда гласит, что он успел увидеть первый отпечатанный экземпляр за несколько часов до смерти.

“Страх, что меня станут презирать за новизну и бессмысленность мнений, чуть не побудил меня отказаться от продолжения задуманного произведения”, – пишет Коперник. Но одновременно с этим он претендовал на научное признание. Действительно, в сопроводительном письме папе Павлу I I I (понтифику, отлучившему от церкви Генриха VIII и укрепившему позиции инквизиции)[233]он признавал, что впервые узнал о возможном вращении Земли из Цицерона, а читая Плутарха, открыл, что у этой точки зрения были свои сторонники. Но, сперва отдав должное вкладу Аристарха Самосского, впоследствии Коперник вычеркнул из рукописи все упоминания о нем[234]. Коперник, однако, превзошел Аристарха в том, что предложил более точную модель вращения планет вокруг Солнца. Меркурий у него обращался примерно за восемьдесят дней (современная цифра – 87,97 дня), Венера – за девять месяцев (современная цифра – 224,7 дня), пара Земля – Луна – за год, Марс – за два неполных земных года (1,88), Юпитер – за двенадцать (11,86), а Сатурн – за тридцать лет (29,4): все оценки вполне адекватные. Ученый даже смог оценить с погрешностью в 5 % максимальные и минимальные расстояния от планет до Солнца.

Коперник также предположил, что Земля вращается вокруг Солнца, полностью оборачиваясь вокруг своей оси каждые 24 ч (из-за чего возникает ощущение, что звезды вращаются в противоположном направлении). Он расставил шесть известных тогда планет в правильной последовательности – Меркурий, Венера, Земля, Марс, Юпитер, Сатурн, – но дальше не продвинулся. Звездная сфера оставалась неподвижной, а траектории планет – окружностями, а не эллипсами. Не все ответы Коперника были верны, но его достижений хватило для возникновения ожесточенной дискуссии. Протестанты с самого начала считали его идеи кощунством. Мартин Лютер (1483–1546), один из тех церковных лидеров, кто усмотрел в новой теории не только шокирующую новизну, но и серьезную ошибку, спрашивал открытым текстом: “Кто осмелится поставить авторитет Коперника выше Святого Духа?” В конце концов, продолжал он, Иисус Навин велел остановиться Солнцу, а не Земле[235].

До тех пор пока идеи Коперника оставались предположениями, Рим хранил молчание, равно как и интеллектуалы из стана церкви. В течение полувека после смерти ученого большинство астрономов признавали важность его теории в частном порядке, но публично по-прежнему придерживались мнения о неподвижной Земле. “Гелиоцентрическая теория была принята далеко не повсеместно вплоть до времен Ньютона, – писал астроном Патрик Мур, – а в странах, далеких от средиземноморской культуры, старые идеи продержались еще дольше”[236]. В Китае и Японии миссионеры-иезуиты продолжали распространять общепринятую космологию. Идея огромной и неведомой вселенной, в которой Земля – лишь небольшая частица, поставила бы значительную часть идейного аппарата христианства под угрозу, это было бы нелегким предприятием. Реакция крещеного мира напоминала историю о викторианской супруге каноника в Вустере, которая, услыхав о теории Дарвина и происхождении людей от обезьяноподобных существ, воскликнула: “От обезьян! Будем надеяться, что это неправда. Но если это так – будем молиться, чтобы об этом не стало широко известно”[237].

Коперник никогда не был упрямым революционером и собирался оживить Птолемееву традицию математической астрономии, а вовсе не подрывать ее. Его расчеты раз за разом оказывались рядом с Птолемеевыми, да и сама структура De revolutionibus отражала “Альмагест”, а таблицы были не точнее, чем принятые ранее. “Если бы не Тихо Браге и Кеплер, – язвительно заключает Отто Нейгебауэр, – система Коперника работала бы на увековечивание Птолемеевой системы в слегка усложненной форме, которая более по душе философам”[238]. Артур Кестлер был еще суровее: на почти четырехстах страницах, посвященных периоду от Коперника до Галилея, он хоронит репутацию польского каноника, по характеру “сварливого педанта без проблеска таланта или иррационального чутья настоящего гения, который, ухватившись за хорошую идею, распространил ее на плохую систему и терпеливо корпел над тем, чтобы нагромоздить в своем труде еще больше эпициклов и деферентов, превратив его в самую скучную и самую невозможную для чтения книгу среди книг, делавших историю”[239]. Но все же Коперник действительно дал первый импульс настоящей революции. Он первым пришел к мысли, что Земля оборачивается вокруг своей оси каждые 24 часа, одновременно вращаясь вокруг Солнца, и разработал на этой основе полноценную теорию. В 1546 году, спустя три года после его смерти, родился астроном, модель космоса которого сохраняла многое от Коперниковой гелиоцентрической теории, но не подразумевала движение Земли. Тихо Браге родился в знатной датской семье и вырос протестантом, унаследовав мировоззрение, ограниченное строгой интерпретацией Писания. Первое затмение он увидел, будучи веснушчатым мальчишкой четырнадцати лет от роду, и был поражен тем, что его предсказали с точностью до дня. Как же мог несовершенный человек предсказать величественные движения небесных сфер? Браге принялся за изучение астрономии. В шестнадцать лет он наблюдал, как соединение Юпитера и Сатурна, предсказанное действующим юлианским календарем на 25 августа 1563 года, опоздало на два дня, если исходить из таблиц Коперника, и на целый месяц, если исходить из таблиц Птолемея (соединением в астрономии называют максимальное сближение двух тел на небосводе, когда совпадают их эллиптические долготы)[240]. Тогда Тихо Браге понял, что астрономическая система отчаянно нуждается в модернизации. И именно это станет его делом.

Смерть в 1565 году опекавшего его дяди, адмирала Йергена Браге, принесла Тихо Браге большое наследство, и вскоре он построил обсерваторию в аббатстве Херревад, в Сконе (юг Швеции, тогда относившийся к Дании), перевернув вверх дном всю Европу в поисках лучших инструментов, среди которых оказался небесный глобус пяти футов в диаметре, стоивший 5 тыс. ригсдалеров – школьный учитель мог заработать такую сумму за восемьдесят лет[241]. Огромный стенной квадрант, медная четверть круга с радиусом почти 2 м, позволял Тихо Браге точно определять момент, когда звезды проходили меридиан. В арсенале находился и большой секстант, точно измеряющий широту и долготу небесных объектов. Кроме обсерватории имелась бумажная фабрика, стеклодувная мастерская, переговорная система труб, канализация, частная тюрьма, небольшая фабрика для изготовления и ремонта инструментов, химическая лаборатория – в сущности, хватало мощностей для самодостаточного мира.

Однажды вечером 11 ноября 1572 года Тихо возвращался из обсерватории домой, когда внезапно заметил ослепительный источник света, превосходящий по яркости Венеру. “Заинтересованный, словно громом пораженный, я стоял, пристально всматриваясь вверх, – писал ученый. – Я был в таком замешательстве из-за невероятности происходящего, что переставал верить собственным глазам”. Он позвал слуг, которые подтвердили явление, но, опасаясь групповой иллюзии, Тихо Браге продолжал останавливать крестьян на улице, прося их также сказать ему, что они видят. В течение последующих восемнадцати месяцев свечение оставалось в небе на северо-западе от трех звезд правой части созведия Кассиопеи, где никогда ранее никакой звезды не наблюдалось. Это не было также ни планетой, ни кометой. Иногда источник был настолько ярким, что был виден даже днем, но к декабрю его яркость потускнела до уровня Юпитера, а уже к марту оставалась лишь точка, свет которой постепенно менялся от белого к красному и, наконец, к серому. Тихо Браге наблюдал этот объект вплоть до его полного исчезнования в марте 1574 года.

Будь это новым объектом в небе, потребовался бы пересмотр всей Аристотелевой космологии, поскольку, по Аристотелю, изменения и распад могли случаться только в подлунном мире, все выше было вечным и неизменным. Но что-то в небе, очевидно, тоже менялось; то, что довелось наблюдать Тихо Браге, было колоссальным звездным взрывом, звездой в предсмертной агонии – феномен, который сегодня известен под именем сверхновой.

Браге был последним известным астрономом, работавшим без телескопа, но зато его время ознаменовалось до сей поры не распространенным почтением к фактам, не говоря уж о том, что он был идеальным наблюдателем, его наблюдения невооруженным глазом отличались точностью до угловой минуты, то есть до 1 / 60 градуса (человеческий глаз вообще является превосходным инструментом для больших расстояний, в ясную ночь он способен различить огонек свечи на расстоянии в 7 миль). Тихо Браге тщательно каталогизировал планеты и звезды, последних он смог перечислить около тысячи. В 1573 году он опубликовал памфлет “О новой звезде”, отдав дань благодарности сверхновой, которая создала ему репутацию. На следующий год он произнес приветственную речь перед академической общественностью на латыни по случаю приглашения в Копенгагенский университет:

В наше время Николай Коперник, справедливо названный следующим Птолемеем, путем собственных наблюдений обнаружил нечто, отсутствующее у Птолемея. Он рассудил, что гипотеза Птолемея допускала нечто неприемлемое и противоречащее математическим аксиомам… Тогда он благодаря поразительному уровню своего гения выдвинул собственную гипотезу другого рода и тем самым восстановил науку о небесных движениях так, что никто до него не достигал такой точности в расчетах курсов небесных тел. И хотя некоторые детали у него противоречат физическим принципам, например то, что Солнце покоится в центре вселенной, или то, что Земля, связанные с ней элементы и Луна движутся вокруг Солнца в тройственном движении, а восемь сфер остаются неподвижными, несмотря на это, Коперник не допускает ничего абсурдного с точки зрения математических аксиом[242].

Дворец и обсерватория Ураниборга на острове Вен (Biblioth?que Mazarine, Paris, France / Archives Charmet / The Bridgeman Art Library)

Тихо Браге понимал, что старая система теряет смысл, но ему не хотелось отпускать Землю из ее центрального положения в космосе. Он произвел на свет систему, ставшую известной под его именем, которая напоминала коперниковскую, но имела два центра – Землю и Солнце. Все планеты, кроме Земли, вращались вокруг Солнца, а само Солнце вращалось вокруг Земли – изящный компромисс между Библией и наукой, хотя и необоснованный, с нашей современной точки зрения. Но Тихо Браге был практиком, а не теоретиком и невозмутимо продолжал двигаться дальше.

Его сообщение о сверхновой одновременно заинтересовало и обеспокоило короля Дании Фредерика II – он опасался, что его ведущий астроном захочет покинуть Данию ради более изобильных пастбищ. Король решил даровать Тихо Браге островок Вен (в старом варианте произношения – Гвен), находящийся на полпути между датским островом Зеландией и Швецией, его скалы поднимались отвесно на сотни футов в пределах прямой видимости от новой крепости, которую Фредерик возводил в Эльсиноре. Вместе с островом астроному досталось щедрое пожизненное финансирование, состоящее из ренты домовладельцев острова: в какой-то момент в 1580-х в распоряжении Тихо Браге находился 1 % дохода страны.

Ученый незамедлительно принялся возводить на острове две новые обсерватории: подземный “Замок звезд”, не подверженный никаким штормам, и надземный комплекс “Ураниборг”, названный в честь греческого бога небес. Это сооружение, еще называвшееся Музей (буквально – “храм муз”), могло похвалиться крепостными стенами, павильонами, ботаническими садами, фонтанами, вольером для птиц, типографией, погребами и башнями. Ко времени его завершения “не было на всем свете ничего подобного этому месту”[243].

В ноябре 1577 года Тихо Браге вместе со своими работниками вытягивал рыболовные сети на запруде, когда обнаружил нечто напоминающее другую сверхновую. Когда совсем стемнело, он разглядел красноватый хвост, вытянутый в сторону от Солнца, – легко узнаваемый признак кометы (само слово в греческом значит “волосатый”; Аристотель использовал его, поскольку считал, что кометы – как нам теперь известно, всего лишь комья льда и грязи – выглядят как волосатые звезды). Астроном поспешил в обсерваторию, где определил положение пришельца, вычислив угол и расстояние до ближайших звездных соседей. В течение четырех месяцев он отслеживал движение кометы по небу и обнаружил, что она не имела заметного параллакса (изменение видимого положения объектов относительно объектов фона в зависимости от сдвига головы наблюдателя).

В докладе королю Тихо Браге рассчитал, что комета находилась на расстоянии, более чем в двести тридцать раз превышающем радиус Земли (четырехкратная дистанция до Луны). Хотя расчеты были очень неточными, это убедило ученого (еще больше, чем раньше сверхновая), что Аристотель ошибался – не могли отдельные сферы вращаться над Луной и под ней. Вместо этого он постулировал общую атмосферу, которая охватывала вселенную и в которой в произвольных местах могли возникать сверхновые и кометы. Старое учение о множественных сферах, писал он в 1588 году, “теория, которую ее авторы придумали для соблюдения видимости, существует только в воображении, чтобы движения планет по их орбитам могли быть постигнуты разумом”.

С течением времени Тихо Браге становился все большим чудаком. Он завел карлика по имени Йепп, которого держал за прорицателя и подкармливал за столом лакомыми кусочками, а также ручного лося, который однажды ночью поднялся по ступенькам в пустую комнату и выпил столько пива, что свалился с лестницы, сломал ногу и вскоре умер. Судьба изменила и Браге: в 1588 году умер король Фредерик II (опять же от неумеренного пьянства), следующие девять лет правила череда регентов, поскольку королевскому сыну было всего десять лет. Все они были друзьями Тихо Браге, так что ничего не менялось, но, как только Кристиан IV вступил в свои права, он тут же прекратил покровительствовать полубезумному звездочету, который четверть века жил на всем готовом. Тихо Браге покинул остров вместе со своими учениками, слугами, инструментами и печатным станком и обосновался в католической Праге. Там он построил свою последнюю обсерваторию в замке Бенатки, в 30 милях от города, где и проводил время до самой смерти в 1601 году, сочиняя стихи и подводя итоги своим исследованиям, но не опубликовал больше ни одного слова[244].

За год до своего изгнания с острова Вен Тихо Браге получил дебютную публикацию двадцатипятилетнего немецкого школьного учителя астрономии и математики. Иоганн Кеплер (1571–1630) был близорук, угрюм, безрассуден, рассеян, происходил из бедной и очень неблагополучной семьи (его мать была обвинена в колдовстве, он сам спасал ее от костра). Кроме того, он был гением. Его сочинение Mysterium Cosmographicum не слишком приближало читателя к пониманию вселенной, поскольку придерживалось все той же концепции концентрических сфер, но оно демонстрировало всю мощь мысли автора, который, кстати, помещал Солнце в центр вселенной. Тихо Браге пригласил Кеплера приехать с визитом, но Вен оказался слишком далеко от дома Кеплера в Граце. Впрочем, четыре года спустя, когда датчанин оказался в Праге, такое путешествие уже стало вполне реальным. Когда в 1598 году школа, где преподавал лютеранин Кеплер, оказалась закрытой по приказу эрцгерцога Фердинанда (обучавшегося у иезуитов), жребий был брошен.

4 февраля 1600 года 55-летний Тихо Браге и 28-летний Иоганн Кеплер наконец встретились “лицом к лицу, серебряным носом к чесоточной щеке”[245]. Они провели три беспокойных месяца в компании друг друга (датчанин был подозрителен и скрытен, молодой немец – упрям и придирчив), по окончании которых Тихо Браге настоял, что Кеплер должен дать письменное обязательство не разглашать ничего о работах датского ученого. Когда в том же году главный помощник Тихо Браге уехал в Данию, Кеплер был приглашен на постоянное место. Двое ученых почти не разговаривали друг с другом, за исключением трапез, но тем не менее после смерти Браге Кеплер оказался назначенным на должность императорского математика (Браге сам занял бы эту должность, если бы не был для нее слишком высокомерным аристократом). Кеплер немедленно принялся за работу, используя колоссальный корпус точных наблюдений Браге для разработки собственных теорий, часть которых (например, планетное движение) опровергали идеи его благодетеля.

К 1605 году все основные исследования Кеплера были закончены – эти годы он так упорно работал над своими вычислениями, что, по его собственным словам, “мог бы уже десять раз умереть”. Помехи со стороны наследников Тихо Браге замедлили публикацию, но в 1609 году вышла кеплеровская “Новая астрономия”. Она утверждала два основных принципа: планеты двигались не по окружностям, а по эллипсам, а их скорость варьировалась в зависимости от расстояния от Солнца.

Фронтиспис книги Кеплера “Тайна мира” (Mysterium Cosmographicum, 1596 год) изображает сферы планет, объединенные каждая с одним из пяти Платоновых тел, определяя таким образом размеры сфер и ограничивая их число шестью. По этой модели Кеплер расчитал расстояние от каждой планеты до Солнца (Mary Evans / Photo Researchers, Inc.)

Ватикан объявил, что только круговые орбиты являются совершенными; Кеплер на это отвечал, что небесное несовершенство служило Богу для создания лучшей музыки, поскольку Он использовал музыкальную схему для расположения планет и приведения их в движение[246]. Также Кеплер смог усилить утверждения Коперника и Браге о том, что звезды находятся неизмеримо дальше, чем считали раньше. Масштаб вселенной, по Кеплеру, был за пределами возможностей воображения.

Великий философ Блез Паскаль (1623–1662), покинувший науку ради религии, отвечал на эти открытия словами атеиста-вольнодумца в своих “Мыслях”: “Меня ужасает вечное молчание этих безграничных пространств!”[247] Кеплера оно тоже ужасало – ему приписывают восклицание: “Бесконечность невозможно помыслить”. Однако эти открытия скорее усилили, чем ослабили его религиозные взгляды. “Но тому, кто слишком глуп, чтобы понять астрономическую науку, или слишком слаб, чтобы поверить Копернику, не задевая своей веры, я бы посоветовал покончить с изучением астрономии и, прокляв какие ему угодно философские мнения, заняться своими собственными делами, и, прекратив бродить по свету, отправиться домой ковыряться на своем участочке”[248][249].

Эти трое ученых – Коперник, Тихо Браге и Кеплер – заложили основания научной революции XVII века. Хотя к моменту смерти Тихо Браге практически ни один астроном не верил в гелиоцентрическую космологию, все они использовали техники Коперника. Как заметил Оуэн Джинджрич, профессор астрономии в Гарварде, Кеплер, “первый астрофизик”, стал “тем человеком, который в действительности создал систему Коперника в том виде, в котором мы ее знаем”[250]. К моменту смерти Кеплера тридцать лет спустя вся дисциплина уже руководствовалась учением Коперника и приняла не только соображения Тихо Браге о движении звезд, но и теории Кеплера о движении планет. Космология полность преобразилась этими тремя учеными… и появлением телескопа. Но это уже другая история – история Галилея.

В году тысяча шестьсот девятом

Свет истинного знания

Излился на людей

Из города Падуи, из скромной хижины;

Исчислил Галилео Галилей,

Что движется Земля, а Солнце неподвижно[251].

Так начинается пьеса Бертольда Брехта “Жизнь Галилея”, изначально озаглавленная “Земля движется”. Людовико, молодой человек, ухаживающий за дочерью Галилея, приходит в дом ученого в Падуе (тогда – часть Венецианской республики). Он рассказывает хозяину, в то время профессору математики: “Возьмите, например, эту диковинную трубу, которую продают в Амстердаме… две линзы: одна такая [показывает жестами двоякую выпуклость], а другая – такая [показывает двоякую вогнутость]. Мне говорят: одна увеличивает, а другая уменьшает. Каждый разумный человек, конечно, поймет: они друг дружку должны уравнивать. Неверно! Сквозь эту штуку все видно увеличенным в пять раз. Вот вам и ваша наука”.

Галилей интересуется, давно ли изобрели это устройство.

Вверху слева: Николай Коперник (1473–1543) (Science Source / Photo Researchers, Inc.); вверху справа: Тихо Браге (1546–1601) (Hulton Archive / Getty Images), хорошо заметен его протез для носа; внизу слева: Иоганн Кеплер (1571–1630) (Science Source / Photo Researchers, Inc.); внизу справа: Галилео Галилей (1564–1642) (SPL / Photo Researchers, Inc.)

Людовико отвечает, “что она была не старше нескольких дней, когда я уезжал из Голландии. Во всяком случае, ее как раз только что начали продавать”.

Строки, которые Брехт вкладывает в уста молодому поклоннику, отражают то, что действительно происходило в Голландии, и реакция Галилея в пьесе тоже соответствует историческим фактам. Никогда не занимавшийся ни ремеслом, ни собственным делом, Галилей научился шлифовать и полировать линзы и вскоре собрал превосходный инструмент. Венеция по природным условиям была лишена крепостных стен, что делало жизненно важным раннее предупреждение вражеских нападений. Восьмого августа 1609 года Галилей предстал перед дожем и его двором с приглашением явиться на колокольню собора Св. Марка, чтобы ознакомиться с применением его нового устройства. Как пишет Брайан Клегг, “престарелых сенаторов приходилось удерживать от стычек друг с другом за право взобраться следующим на крышу и обозреть горизонт в поисках кораблей. Они напоминали детей, получивших новую игрушку”[252]. Очень ловко представив изделие, Галилей удвоил свой академический оклад (с 520 флоринов в год до 1000 – эквивалент сегодняшних 300 тыс. долларов)[253], а его профессорский контракт стал пожизненным.

Портреты молодого Галилея изображают его крепким, рыжеволосым, с короткой шеей и грубыми чертами лица: эти характеристики полностью передают его упрямую натуру и жесткую самоуверенность. “Самозабвенный карьерист с умением преподнести себя”[254], он теперь претендовал на авторство изобретения (которое он предпочитал называть “тубусом”), а его уровень в шлифовке линз был столь высок, что до 1630 года никто не мог превзойти его. Однако в действительности до него было еще несколько изобретателей.

Роджер Бэкон в 1268 году был, вероятно, первым человеком на Западе, кто изобрел инструмент для наблюдения на далеком расстоянии, в Китае астрономы придумали что-то подобное еще раньше. Леонардо да Винчи в своих дневниках и записных книжках оставил заметки, которые потенциально могут означать, что он открыл телескоп еще до конца XV века: “Сделать зеркала, чтобы увеличить Луну”, и “для изучения природы планет нужно открыть крышу и направить изображение отдельной планеты на вогнутое зеркало. Отраженное изображение планеты будет показывать поверхность планеты, увеличенной многократно”[255]. С годами, впрочем, голландский шлифовщик линз Ханс Липперсгей стал в общественном сознании главным изобретателем телескопа. В 1608 году он объявил о своем открытии: сочетание выпуклой и вогнутой линз приближает далекие объекты. В сентябре того же года он презентовал трубку с закрепленными в ней двумя небольшими линзами немецкому принцу Морицу Оранскому. К следующему апрелю подзорные трубы продавались в каждой лавке с очками на Понт-Неф в Париже. Голландский прототип давал трехкратное увеличение, очень скоро появились инструменты, способные на более чем двадцатикратное увеличение[256].

Но именно Галилею достались лавры за использование телескопа в исследованиях небес. “Трудно найти более удивительное открытие за всю историю науки, – утверждает Ноэль Свердлоу. – В течение двух месяцев, декабря и января [1609–1610], он сделал больше открытий, изменивших мир, чем кто-либо другой до него или после”[257]. Это гипербола, но вполне допустимая. Через семь месяцев после торжественного представления трубы перед дожем Галилей сжато и сухо описывал свои открытия в Sidereus Nuncius (“Звездном вестнике”, хотя сам Галилей, кажется, подразумевал “Послание звезд”): “Я видел изобилие звезд, звезды, которых не видел никогда ранее и которые превосходят старые, уже известные, десятикратно. Но самое большое потрясение вызовет… то, что я открыл четыре планеты”.

Изобилием звезд, о котором писал Галилей, был Млечный Путь. Телескоп наводил на мысль (чего не могло случиться при наблюдении невооруженным глазом), что у неба есть глубина. Сама идея о том, что Млечный Путь – это не полоска на небе, а множество звезд, скопление бессчетного числа сияющих пятнышек света, поражала воображение.

Планеты, которые разглядел Галилей, были четырьмя главными спутниками Юпитера, сегодня известными как Галилеевы спутники[258]. Открытие доказывало, что у других планет имеются объекты, вращающиеся вокруг них, и оказывало сильную поддержку коперниковской версии солнечной системы: если бы Юпитер был закреплен на хрустальной сфере, эти луны ее бы просто разбили. Телескоп позволил Галилею сделать первые систематические зарисовки Луны, обнаружить фазы Венеры, а также продемонстрировал то, что размер планет значительно больше, чем считалось ранее. Но произошло и еще одно огромное открытие: на Солнце были пятна. Оно было “пятнистым и нечистым” – Галилей смог рассмотреть солнечные пятна. Более того, он наблюдал их перемещение по солнечной поверхности, что означало вращение самого Солнца. Занятый определением периода обращения лун Юпитера (и защитой собственного положения при дворе), Галилей не придал большого значения этим меткам, признавшись, что “он не знал и не мог знать, каков материал этих солнечных пятен”, более всего они напоминали ему облака[259].

И до Галилея люди могли наблюдать объекты, пересекающие солнечный диск, но именно сообщение Галилея поразило широкую аудиторию и принесло ему славу. В 1611 году он нанес триумфальный визит в Ватикан[260], где папа Павел V даровал ему частную аудиенцию. Умение определить, будет Рим аплодировать или вынесет приговор, всегда было высшим искусством, но Галилей держался в стороне от этого, возможно, беря в расчет изречение одного кардинала о том, что Библия была “предназначена для того, чтоб научить нас, как устроиться на небе, а не тому, как устроено небо”.

Галилей, рыцарь науки, во время его триумфального визита в Ватикан в 1611 году (Louvre, Paris, France / Peter Willi / The Bridgeman Art Library)

Другие астрономы тоже заявили о том, что они наблюдали такие отметки на Солнце. Английский ученый Томас Хэрриот (1560–1621) и два немецких, Кристоф Шайнер (1573–1650) и Иоганн Голдсмид (1587–1616) – его обычно называли латинским именем Фабрициус, – выпустили памфлеты; первым был Фабрициус, который торжественно доставил свое сообщение на книжную ярмарку во Франкфурте осенью 1611 года. Хэрриот, преподаватель математики и помощник сэра Уолтера Рэли, произвел и записал сто девяносто девять наблюдений за солнечными пятнами между 3 декабря 1610-го и 18 января 1613-го, но не опубликовал их. Иезуит Шайнер вел наблюдения с 21 октября до 14 декабря 1610 года, но опубликовал свои результаты только в 1612-м. Первые зарисовки Галилея появились 3–11 мая 1612 года. По-видимому, в самом деле каждый из четырех ученых самостоятельно замечал это явление и не выдавал чужие находки за свои.

Кто бы ни заслуживал пальмы первенства, именно заявление Галилея инициировало последующие дебаты. Шайнеровские наблюдения были дезавуированы его коллегами по ордену, но он и не утверждал, что это пятна – скорее, силуэты не обнаруженных ранее небольших планет, проходящих близко от поверхности Солнца; в конце концов, говорил он, почтительно вторя Аристотелю, Солнце совершенно и на нем не может быть пятен. Через год Галилей ответил “Письмами о солнечных пятнах” – тремя публичными посланиями, в которых утверждал, что пятна действительно находились на солнечной поверхности. Доказательством служило то, что пятна показывали специфическое ускорение и замедление движения, когда пересекали солнечный диск, и удлинялись и укорачивались, когда достигали краев диска, – поведение, в точности соответствующее объектам, закрепленным на вращающемся шаре.

В последней эпистоле Галилей (возможно, ища поводов для полемики) впервые публично поддержал систему Коперника. Письмо привело Рим в ярость – в 1590 году он ясно обозначил свои позиции в деле неаполитанского философа Джордано Бруно. Когда Бруно провозгласил, что вращение Земли вокруг Солнца есть неоспоримый факт, инквизиция обвинила его в ереси и приверженности пантеизму, отрицающему сотворение мира Богом. В первый день Великого поста 1600 года философа привезли на муле на римскую площадь Кампо-де-Фиори, где его привязали вниз головой, раздели догола, а затем сожгли на костре, проткнув железной спицей язык, чтобы Бруно не мог богохульствовать. В течение многих лет католикам было запрещено читать труды Коперника, пока девять главных высказываний, утверждавших, что его идеи были не просто теорией, не были окончательно вымараны. Даже после этой цензуры Конгрегация списка запрещенных книг наложила запрет на работы Коперника (15 марта 1615 года) на основании того, что он защищал “ложное пифагорейское учение о том, что Земля движется, а Солнце неподвижно”.

Галилей оказался в безвыходном положении. Его обязали предстать перед Святейшим кабинетом, и 26 февраля 1616 года был составлен документ, подтверждающий, что астроному указано на необходимость отойти от учения Коперника и “воздерживаться от преподавания или защиты этого мнения и даже от его обсуждения”. Он избежал приговора, но был вынужден заняться другими исследованиями. Такое положение дел сохранялось в течение семи лет, пока Маффео Барберини, сам астроном, не был избран папой, став Урбаном VIII. Многолетний друг Галилея пригласил ученого в Рим, где они провели шесть встреч, прогуливаясь по ватиканским садам и обсуждая вопрос гелиоцентричности. Папа Урбан сообщил своему старому товарищу, что отозвать порицание 1616 года он не сможет, но тем не менее призывает его разработать формальное сравнение между системами Коперника и Птолемея при одном условии: никаких выводов в пользу одной или другой делаться не будет, одному только Богу известно устройство вселенной.

Галилей принялся за работу, которая заняла у него девять лет. Наконец после одобрения местного флорентийского цензора он опубликовал свой “Диалог о двух главнейших системах мира”, первое издание – на тосканском диалекте, второе – на ученой латыни[261]. “Господь был милостив даровать мне первому счастье наблюдать восхитительные вещи, скрытые от нас все эти годы”. Сила аргументов ученого была очевидна: гелиоцентрическая версия была вне обсуждений, Земля движется, потому что этого требует математика. “Широкое применение латыни, которая продолжала быть языком ученых вплоть до начала XVIII века, способствовало обмену идеями; все, что открывалось или предполагалось в одной стране, быстро получало хождение во всех других”, – писал Г. Л. Менкен[262].

Папа Урбан, уже изрядно пострадавший в борьбе с контрреформацией, воспылал “гневом преданного любовника”[263]и спустил с цепи инквизицию. Через год на формальном судебном процессе Галилею вменялось “сильное подозрении в ереси”. Сам по себе гелиоцентризм никогда не провозглашался ересью, ни ex cathedra, ни на церковном соборе; дело было просто в том, что, как выразился один комментатор, “Галилей намеревался вколотить Коперника в глотку христианскому миру”. Кеплер, например, был возмущен поведением коллеги: “Некоторые своим безрассудным поведением довели дело до того, что труды Коперника, которые были совершенно доступны в течение восьмидесяти лет, теперь запрещены”[264]. По сути, Галилей вынудил Церковь заставить его замолчать, что та и сделала, повсеместно запретив продажу “Диалога…” и конфисковав все имевшиеся экземпляры. “Мы не можем познать, – говорит у Брехта кардинал, обращаясь к Галилею, – но вправе исследовать. Наука является законной и весьма любимой дочерью церкви”.

У Брехта ученому угрожали дыбой и другими пытками, но об этом у нас нет никаких свидетельств. Во всяком случае, чиновники курии предпринимали специальные усилия, чтобы избежать конфликтов. Во время процесса семидесятилетний Галилей был поселен в пятикомнатных покоях с видом на ватиканские сады, ему был выделен камердинер и человек для прислуживания за трапезой. Счастливым для Церкви образом 22 июня 1633 года Галилей пал на колени в большом зале доминиканского храма Св. Марии над Минервой и отрекся – возможно потому, что все-таки был ревностным католиком и увидел смысл в том, чего добивался святой престол: наука не может рассматриваться в качестве источника высшего авторитета. А возможно, просто потому, что, как он и признал в отречении, у него не было неопровержимых доказательств своей правоты.

По оглашенному приговору Галилею предстояло безвыездно проживать на своей вилле Альчетри под Флоренцией, где он и провел остаток жизни в исследованиях, в особенности в изучении динамики. К 1637 году он потерял зрение (хотя и не по причине наблюдений за Солнцем), а через год его посетили среди прочих Гоббс и Мильтон. Последний спустя шесть лет в “Ареопагитике” вспоминал космологическую дискуссию с Галилеем, “проводившим свою старость в тюрьме инквизиции за то, что держался в астрономии иных взглядов, чем францисканские и доминиканские цензоры”. Мильтон вернется к этой теме и в “Потерянном рае”:

…не томись

В разгадыванье сокровенных тайн,

Их Богу предоставь; Ему служи

Благоговейно…

…Слишком далеки

Просторы неба, дабы ведал ты,

Что там свершается. Итак, пребудь

Смиренномудрым…[265]

В той же поэме Мильтон описывает спуск Сатаны на Солнце, при котором образуется пятно, подобное тем, что видны в телескоп. Жест поддержки? В любом случае запоздалый. По крайней мере Галилей, вопреки легендам, не провел в тюремной камере и одного дня. Он написал две комедии, читал лекции о Данте и продолжал свои академические занятия до самой смерти в 1642 году в возрасте семидесяти восьми лет. “В поколении, заставшем Тридцатилетнюю войну, самое большое несчастье, которое случилось с ученым, – история Галилея, мягкое порицание и почетное домашнее содержание вплоть до мирной смерти в своей постели”, – писал Альфред Норт Уайтхед[266].

Почти столетие спустя папа Бенедикт XIV даровал имприматур (официальное разрешение Рима на публикацию) первому изданию “Полных трудов” Галилео Галилея (хотя парадоксальным образом запрет на сочинения Коперника продолжался до 1828 года). И еще двести тридцать лет пройдет, прежде чем в 1979 году папа Иоанн Павел II распорядится пересмотреть дело Галилея. Понадобилось двенадцать лет либерализации, чтобы в 1992 году Ватикан наконец признал, что Галилей и его теория оправданы. В марте 2008 года папа Бенедикт X V I объявил, что памятник великому ученому будет воздвигнут в Ватикане. Глава Папской академии наук (сам ядерный физик) сообщил: “Церковь желает закрыть дело Галилея и достичь четкого понимания не только наследия Галилея, но и отношений между наукой и верой”[267]. Даже по стандартам великой институции это было чересчур долго.

В действительности, разумеется, причины для столь долгого неприятия новых теорий были. Появление новых технологий серьезно затрагивает системы верований, и только с изобретением печатного пресса идеи смогли получить по-настоящему широкое распространение. Но даже тогда революционные повороты мышления непременно встречали серьезное сопротивление. Зигмунд Фрейд (1856–1939) распространял мнение, согласно которому Коперник вызвал особенное отторжение, потому что вывел человечество из его исключительного положения в центре вселенной. На самом деле удар, нанесенный галилеевым открытием пятен на Солнце, был гораздо сильнее. Было нечто ужасное в несовершенстве Солнца, как будто недостатки человеческого лица перенеслись на всемогущий диск в небе, многократно увеличенные. До Галилея Солнце было безупречной, идеальной сферой. И вдруг в одночасье оно стало грязным, испещренным пятнами.

С появлением телескопа человеку XVII века пришлось заново выстраивать мир, уже не путем интерпретации воображаемого – солнечных богов, небесных колесниц, пожирающих солнечный диск драконов, – а путем постоянной квалификации и фильтрации наблюдаемых данных. И вероятно, мысль о том, что великая звезда пусть и центр солнечной системы, но лишь малая часть Божьего замысла, да и та в пятнах, переворачивала все мировоззрение.

Данный текст является ознакомительным фрагментом.