Глава 10 Диковинные моря мыслей

We use cookies. Read the Privacy and Cookie Policy

Глава 10

Диковинные моря мыслей

Не знаю, чем я могу казаться миру, но сам себе я кажусь только мальчиком, играющим на морском берегу, развлекающимся тем, что до поры до времени отыскиваю камешек, более цветистый, чем обыкновенно, или красивую раковину, в то время как великий океан истины расстилается передо мной неисследованный[268].

Исаак Ньютон

Когда созрело яблоко и падает – отчего оно падает? Оттого ли, что тяготеет к земле, оттого ли, что засыхает стержень, оттого ли, что сушится солнцем, что тяжелеет, что ветер трясет его, оттого ли, что стоящему внизу мальчику хочется съесть его?

Лев Толстой, “Война и мир”

“Я должен умереть, – писал нелюдимый и одинокий школьник Исаак Ньютон (1643–1727) в своем учебнике латинских упражнений, – я могу только рыдать и не знаю, что мне делать”. Главный биограф описывает его как “измученного человека… крайне невротичного, вечно колеблющегося, как минимум до достижения среднего возраста, на грани нервного срыва”[269]. За всю жизнь он так и не женился; как шутил персонаж в “Аркадии” Тома Стоппарда, секс был “притяжением, которое Ньютон сбросил со счетов”. Трудно представить себе его и наслаждающимся галилеевым определением вина как “света, собранного влагой”. У него не было слуха, скульптуры он называл “каменными куклами”, а поэзию – “гениальной бессмыслицей”[270]. Но после смерти сэр Исаак Ньютон был признан крупнейшим гением своего времени. Знаменитый во всем западном мире, он тридцать лет пробыл председателем Королевского общества (величайшая научная институция мира, основанная во времена физика-любителя Карла II), дважды был членом Парламента, удивительным образом он также оказался энергичным и квалифицированным управляющим Монетного двора, когда вступил на эту должность и отвечал за чеканку монет во всей Англии. Местом его последнего упокоения стало Вестминстерское аббатство, там воздвигнут мраморный монумент 25 футов высотой, где над полулежащей статуей Ньютона висит небесный глобус. Рядом херувимы взвешивают Солнце и планеты, латинская надпись гласит: “Пусть смертные радуются, что существовало такое украшение рода человеческого”. Никто во всей истории человечества не понимал “что делать” лучше него.

Еще не достигнув двадцати четырех лет, Ньютон начал формулировать принципы тяготения – основы современной предсказательной астрономии – и доказывать, что объекты на Земле и в небе движутся согласно одним и тем же законам. К этому возрасту он уже сделал важнейшие открытия о природе оптики, о свойствах цвета и света и собирался разрабатывать законы охлаждения, формулировать принципы сохранения момента, изучать скорость звука в воздухе, строить теорию происхождения Солнца. Он первым объяснил природу приливов, изложил новые идеи о конструировании телескопов и выступил одним из создателей математического анализа – дисциплины, без которой наука в ХХ веке не сделала бы ни шагу. “Не стоит заблуждаться, – сказал Эйнштейн в 1919 году, когда его теория относительности принесла ему мировую славу, – и полагать, что сильнейшая работа Ньютона может быть упразднена той или иной новой теорией. Его великие и яркие идеи сохранят свое уникальное значение навечно”[271].

Исаак Ньютон родился на Рождество в семье фермера в деревеньке Вулсторп на восточном побережье, в графстве Линкольншир. Ранняя смерть отца и скорое повторное замужество матери оставили ребенка на попечении бабушки – не редкость в те дни, но и не слишком плодотворно в плане воспитания. Мальчиком Ньютон мастерил солнечные и обычные часы и всегда точно определял время по Солнцу. В июне 1661-го он уже учился в Тринити-колледже – тогда, как и сейчас, самом знаменитом и большом колледже Кембриджского университета.

Аристотель и прочие великие греческие философы все еще служили поддержкой царящей ортодоксии, но ростки радикальных инноваций уже возникали в лице Рене Декарта (1596–1650), который хоть и сохранял свои исследования в тайне из боязни смертоносной немилости церкви, но в 1644 году опубликовал “Начала философии”. В этом сочинении он, в частности, утверждал, что Солнце – лишь одна из множества звезд, каждая из которых находится в центре собственной “воронки”. У Ньютона такая вселенная вызывала массу вопросов. Почему любой объект всегда стремится упасть как можно ниже? Или почему он двигается в определенном направлении? Галилей рассмотрел, что лунные горы и ущелья похожи на земные, но если они сделаны из того же вещества, что и наша планета, то что удерживает Луну в небе? Почему она кружит вокруг Земли, вместо того чтобы устремиться вниз или, напротив, улететь прочь? Личный физик королевы Елизаветы Уильям Гилберт мог сделать невольную подсказку, когда в работе De Magnete (1600) предположил, что Земля обнаруживает то, что мы сегодня называем “биполярным магнитным полем”, т. е. что ее полюсы заряжены и превращают ее в “большой магнит”. Но что такое магнит?

Сэр Исаак Ньютон (1643–1727) (Science Source / Photo Researchers, Inc.)

Над этими головоломками Ньютон размышлял в своей комнате, расположенной между Главными воротами Тринити-колледжа и часовней. Но во время суровой зимы 1665 года в Англию с континента пришла чума, распространяясь от прихода к приходу, убивая тысячи людей еженедельно. Менее чем за год погиб каждый шестой лондонец. Кембридж не остался в стороне – шестнадцать колледжей были закрыты (каждый был небольшой общиной, даже к XIX веку весь университет насчитывал всего четыре сотни студентов), а Ньютону пришлось вернуться в каменный фермерский дом своей бабки. Его изоляция продлилась около девятнадцати месяцев, в течение которых он успешно создал современную математику, механику и оптику. Как вспоминал сам Ньютон, “я был в самом расцвете сил и занимался математикой и философией больше, чем когда-либо потом”[272].

Его научную проницательность можно обнаружить в ответах, которые он нашел на два солнечных вопроса – какова масса Солнца по сравнению с Землей и какова его относительная плотность. Ньютон подсчитал, что Солнце в 28 700 раз массивнее Земли (сильно заниженная оценка, но ближе не подходил никто), а его плотность составляет примерно 0,25 от земной (отличается от современной оценки на 2 %). Сила тяжести, впрочем, оказалась более крепким орешком: пройдет почти двадцать лет, прежде чем Ньютон публично выдвинет свою теорию, и к тому времени он уже частично воспользуется чужими идеями. Около 1639 года астроном Джереми Хоррокс (1617–1641), тоже учившийся в Кембридже, предположил, что на движение Луны, обусловленное Солнцем, воздействует и некоторая сила, исходящая от Земли. Вслед за этим члены Королевского общества Роберт Гук (1635–1703), Эдмунд Галлей (1656–1742) и сэр Кристофер Рен (1632–1723), а также французский священник Исмаэль Буйо (1605–1694) предположили, что эта сила стремительно уменьшается по мере удаления объекта от центра Земли. Но именно Ньютон распознал действие общего закона и первым продемонстрировал, как он работает.

Ученый заключил, что тело на поверхности Земли удерживается силой примерно в триста пятьдесят раз большей, чем центробежная сила, отталкивающая его от Земли из-за ее вращения, – эту силу он назвал “гравитацией” (лат. gravitas – тяжесть). Вопрос был не в том, существует ли эта сила – Галилей показал, что существует, – а в том, простирается ли она столь далеко от Земли, чтобы оказаться силой, которая удерживает Луну на ее орбите. По расчетам Ньютона, если взаимное притяжение было пропорционально массам тел и уменьшалось пропорционально квадрату расстояния между ними, то оно объясняло не только орбитальное вращение Луны, но и формирование орбит всех прочих планет – отсюда и его термин “всемирное тяготение”. Этой же формулой он описал расположение планет и звезд, а также причину предварения равноденствий, объяснил отливы и приливы. Даже сегодня грандиозный масштаб этого рассуждения ставит его в первые ряды среди достижений человеческого разума; но, произведя все расчеты, Ньютон отложил их в сторону.

Много лет спустя он расскажет как минимум четырем разным людям, что его вдохновило яблоко в собственном саду. Что, если сила, заставляющая плод падать с дерева, не ограничивается каким-то расстоянием, а распространяется от Земли дальше и дальше? Ньютон никогда не писал о каких-то вспышках прозрения, только “я начал думать о тяготении, простирающемся до орбиты Луны” как о силе, действие которой всегда направлено от центра Земли[273].

Через неполных два года Кембридж вновь открылся, и Ньютон, вернувшись, сразу сделал несколько важных открытий о природе света. Платон думал о зрении как о результате действия частиц, вылетающих из глаз смотрящего; но где находилась суть света, внутри или снаружи наблюдателя? Аристотель понимал, что свет был необходимым условием существования цвета, а Птолемей экспериментировал с углами преломления – но откуда брался цвет, не был ли он даром Солнца?

На этот раз вдохновение приняло форму не яблока, а орнамента. В нескольких милях от города на берегу реки Кэм располагалась деревня Стербридж Коммон, где каждый год проводилась большая ярмарка. На ярмарке у местного шлифовальщика линз Ньютон приобрел призму, простой треугольный брусок стекла, по форме напоминающий нынешнюю шоколадку “Тоблерон”. Вернувшись домой, он установил призму – когда луч Солнца падал на нее, возникали разные цвета. Меняет ли стекло свет или же солнечный свет содержит разные цвета, которые призма лишь разделяет? Ньютон знал, что телескоп производит радужный эффект вокруг любого объекта наблюдения, потому что край линзы является призмой. Но ему казалось неубедительным объяснять это тем, что белый свет по мере прохождения через линзу темнел в тонких местах и становился красным и еще больше темнел в толстых местах, становясь синим. Ньютон поставил эксперимент, в котором тонкий солнечный луч падал на призму, что делало разделение света еще более четким. Ньютон писал: “Поначалу это было очень приятным развлечением – наблюдать производимые таким образом живые и интенсивные цвета; но немного спустя, занявшись более тщательным их рассмотрением, я с удивлением обнаружил у них продолговатую форму, каковая, согласно признанному закону рефракции, должна быть круговой. Я также заметил… что свет с одного края изображения подвергается воздействию рефракции сравнительно сильнее, чем свет с другого края”[274].

Разные цвета преломлялись разным образом и в порядке радуги – призма отклоняла их по разным направлениям, что значило, что солнечный луч может разлагаться на составляющие. Ньютон идентифицировал красный, оранжевый, желтый, зеленый, синий, голубой и фиолетовый цвета. Голубой не является отдельным цветом, как и оранжевый, но Ньютон пал жертвой нумерологии и руководствовался в своих наблюдениях магической цифрой семь[275].

Ньютон, использующий призму для разложения белого света в спектр, как его представил французский художник XIX века (Image Select / Art Resource, N. Y.)

На следующем этапе нужно было выделить из белого один сплошной цвет и пропустить его через вторую призму. Ньютон поставил одну призму за другой и вращал первую таким образом, чтобы направлять по очереди синий, красный и другие цвета на вторую призму. Он обнаружил, что вторая призма уже не создает новых цветов и вообще никак не изменяет входящий в нее луч. “Свет состоит из по-разному преломляемых лучей”, – отмечал он. Таким образом, цвет оказывался не модификацией света, а его основным свойством: белый свет, который считался лишенным окраски, в действительности содержал все доступные глазу цвета.

Декарт считал, что цвет “возникает” в результате вращения крошечных частиц, из которых состоят лучи света. Идея Ньютона была в том, что наблюдаемые нами цвета разделяются в процессе прохода сквозь объекты, а не создаются самими объектами. Он отвергал мысль Декарта, утверждая, что, например, нарциссы не являются по своей сути желтыми, а радуга есть лишь совокупность водяных капель, собирающихся в атмосфере во время дождя и выполняющих функции призмы. Цвета радуги (и вообще чего бы то ни было) являются функцией того, каким образом наши глаза обрабатывают отдельные длины световых волн.

С точки зрения культуры Ньютон по меньшей мере ступал на опасную дорогу. Радуги были природным образом тесно связаны с солнцем[276]. Греки считали их тропинками, протоптанными посланцами между землей и небесами. Войска инков поднимали радужные полотнища, североамериканские индейцы считали, что мертвые живут в Стране радуг, мятежные немецкие крестьяне XVI века маршировали под радужным знаменем, эмблемой апокалиптической надежды. И вдруг величественная небесная арка превращается в какой-то побочный эффект дождевых капель![277]Спустя столетие представители романтизма были поражены этим снижением статуса, а в 1817 году Китс обвинил Ньютона в том, что он фактически уничтожил поэзию радуги, сведя ее к призме. Но, несмотря на это, великий поэт все равно пил за здоровье великого ученого[278].

Ньютон с головой ушел в исследования, у которых не было почти никаких ограничений. В одном опыте он столько, сколько позволяли глаза, смотрел на отражение солнца в зеркале, периодически отходя в темный угол комнаты, чтобы увидеть, какой именно формы и цвета пятна плавают перед глазами в темноте. Он многократно повторял этот опыт, пока, опасаясь нанести себе непоправимый вред, не заперся в затемненной комнате, чтобы восстановить зрение. На это ушло целых три дня. Во время другого опыта, направленного на доказательство того, что цветовое восприятие зависит от нажима на зрительный нерв, Ньютон просовывал штопальную иглу себе в глазницу, пока не касался задней стенки, бесстрастно отмечая “белые, темные и разноцветные круги”, возникающие в процессе тыканья иглой. Он никогда не ограничивался одним любопытством, одержимость была его второй натурой.

Поскольку световые лучи разных цветов различаются также своей преломляемостью, Ньютон сделал вывод, что нечеткость изображения, формирующегося линзой телескопа, происходит из-за того, что лучи разных цветов фокусируются в разных точках. Одна линза, вероятно, не может производить четкое изображение, поскольку телескоп-рефрактор, подобно призме, расщепляет белый свет на отдельные цвета, окружающие изображения звезд и планет фальшивыми оттенками. Так он изобрел первый работающий телескоп-рефлектор (известный сегодня как телескоп системы Ньютона). Самостоятельно отшлифовав зеркала (не самое благодарное дело: в 1677 году великий голландский философ Спиноза умер всего в сорок четыре года – его легкие были испорчены вдыханием годами стеклянной пыли от шлифования линз), Ньютон собрал превосходный инструмент с увеличенным зеркалом, правда, шириной всего лишь в дюйм. Потом он отлил двухдюймовое зеркало и поместил его в сферическое закругление в конце трубы, где под углом в 45° оно ловило отраженные лучи и передавало изображение на выпуклую линзу окуляра, через который наблюдатель смотрел на звезды. В 1671 году Ньютон отправил этот небольшой, всего 6 дюймов в длину, инструмент в Королевское общество, где тот произвел настоящий фурор среди двух с небольшим сотен членов общества. Этот результат сподвиг ученого на публикацию труда “О цвете”, который позднее расширился и превратился в “Оптику” (1704). В этом сочинении Ньютон развернуто излагал свои теории и заканчивал ставшим знаменитым набором риторических “вопросов”, разъясняющим его размышления о природе физического мира. Согласно предсказанию Ньютона, ответы на эти вопросы появятся только у грядущих поколений[279].

Нарциссизм: оно думает, что весь мир вращается вокруг него

Впрочем, несмотря на знаменитую эпиграмму Александра Поупа: “Был этот мир глубокой тьмой окутан. / Да будет свет! И вот явился Ньютон”, – некоторые представители академического мира были не в таком восторге от его достижений. Многие коллеги Ньютона по прочтении трактата “О цвете” отнеслись крайне скептически к той идее, что свет состоит из крошечных частиц, возбуждающих движение в эфире. Глубоко оскорбленный этим приемом (как и многими другими случаями) Ньютон вступил в ожесточенный спор, беспрестанно требуя удовлетворения за реальные или воображаемые проявления неуважения, все более свирепо отвечая на любую критику, зачастую нанося личные оскорбления и отказываясь снисходить к тем, кого он считал “трещотками от математики” (и кем они в сравнении с ним, безусловно, являлись).

Самым стойким из его врагов был Роберт Гук, главный помощник Кристофера Рена при восстановлении Лондона после пожара 1666 года, куратор экспериментов при Королевском обществе. Начало их соперничества относится к 1672 году, когда Гук впервые раскритиковал Ньютоновы теории света, утверждая, что они не подкреплены достаточными доказательствами. Гук занимал важные посты и был уважаем за свои работы и изобретения – в числе прочего он усовершенствовал барометр и разнообразные термометры, создал анемометр (измеряющий скорость ветра), исследовал ультрафиолет и природу эластичности, продемонстрировал жизненную необходимость воздуха для людей и животных. Он много писал о природе света в Micrographia (1665) – большом труде, подробно повествующем о другом его изобретении, составном микроскопе.

Разъяренный Ньютон объявил Гука неспособным понять его суждения. Их обмен язвительными нападками не ослабевал с годами, не помогло и предположение голландского математика Христиана Гюйгенса (1629–1695), тоже явившееся вызовом для теории Ньютона. Гюйгенс предположил, что свет состоит из волн, а не из частиц. В действительности свет проявляет свойства и волны, и частицы, но это открытие будет сделано только через несколько столетий. Тем времен ожесточенный диспут продолжался, подогреваемый тем, что каждая сторона могла показать неполную правоту оппонента, но не могла окончательно подтвердить собственную версию.

Переместимся теперь в кофейню на лондонском Стренде, где в январе 1684-го Гук, Галлей и Рен затеяли спор о притяжении между Солнцем и планетами. После продолжительных дебатов Рен предложил щедрый приз, книгу стоимостью до 40 шиллингов (месячный доход рабочей семьи) на выбор, тому из них, кто сможет в течение двух месяцев показать, какую форму должна иметь планетная орбита, если тяготение Солнца подчиняется закону об обратном квадрате. Время прошло, ответа ни у кого не нашлось, и тогда Галлей отправился в Кембридж, чтобы поставить вопрос перед Ньютоном[280]. Как позднее рассказывал Галлей, великий ученый немедленно ответил, что у орбиты будет форма эллипса, добавив, что проблема тяготения решена им уже давно, просто он никому об этом не сообщал, но сейчас примется за подготовку работы к публикации. Получив это известие, Гук заявил, что у него эта идея возникла еще лет пятнадцать назад и он писал Ньютону в 1679 году, обсуждая как раз подобный закон. Гук мог интуитивно дойти до природы тяготения, но у него не было математической базы для доказательства, и хотя он, вероятно, чувствовал себя обманутым, история пестрит подобными недооткрытиями.

Ньютон в ответном насмешливо-скромном письме Гуку был краток: “Если я видел дальше других, то потому, что стоял на плечах гигантов”. Их вздорные уколы закончились только со смертью Гука в 1703 году, после которой в результате изрядных политических махинаций его великий соперник был избран преемником на должность председателя Королевского общества. Но успех не мог изменить природы этого человека. Несмотря на всеобщее одобрение, встретившее Principia (откуда он удалил благодарность Гуку), он скрывал львиную долю своих исследований[281], запираясь в своей комнате в Тринити-колледже, не обращая внимания на пищу, трудясь при свете свечи, полностью уходя в себя. Он всегда был в разладе с собственным миром.

Несмотря на то что Ньютон делал упор на концепции универсальности фундаментальных законов природы, сам он стремился не к предсказуемой, механической вселенной, а к той, где нашлось бы место для духовного, то есть алхимии, на заре своих дней в основном занимавшейся трансмутацией “низких” веществ, особенно металлов, в “высшие” посредством “правильной медицины”. К XII веку эта тайная деятельность глубоко проникла в европейскую культуру благодаря арабам. Сперва между алхимией и химией почти не делали различий, обе дисциплины были связаны с различиями материальных веществ. Но алхимия также включала в себя исследование природы в форме порождения, ферментации, трансмутации и трансфигурации.

Алхимики различали семь основных металлов, каждый соответствовал одной из планет, в то время как Солнце идентифицировалось не только с золотом как с веществом, но и с “философским золотом”, со скрытой в нем мистической силой. Все это представляло огромный интерес для Ньютона. “Ни один жар не радует так сильно, как жар Солнца”, – писал он. Чашей Грааля каждого алхимика был так называемый философский камень, идеальный баланс стихий и сил, который, считалось, способен трансмутировать любой металл в золото и сообщить земному человеку способность к всеведению. Когда Сатана у Мильтона опускается на ослепительно сияющее Солнце, поэт затрудняется дать описание светила, но сообщает, что его можно уподобить философскому камню: “Тот камень, что существовал в мечтах, / Верней, чем наяву; искали зря / Философы столетьями его”[282]. Этот талисман фигурировал под разными именами, включая “солнце”, и, как считалось, принимал две основные формы: белого камня, который мог превращать основные металлы в серебро, и красного камня в солярной фазе, который мог превращать их в золото.

В садовой пристройке, примыкающей к стене университетской церкви и оборудованной специальным дымоходом для отвода дыма, Ньютон соорудил лабораторию, где огонь полыхал днем и ночью. При выплавке темно-красного сплава (сульфида красной ртути, известного художникам как вермильон или киноварь) он выделил жидкий металл, известный как ртуть, называвшийся в алхмии Mercurius, первоматериал, из которого состоит все прочее. Ньютон проникся такой страстью к этому металлу, что наполнил свою комнату в его честь темно-красной мебелью, шторами, подушками, даже кровать была обита красным. В конце концов постоянное обращение Ньютона с ртутью привело к скоплению металла в теле, вызывая тремор, бессонницу и, как некоторые считают, параноидальные иллюзии (согласно недавней теории, Ньютон страдал от синдрома Аспергера, одной из форм аутизма). Но Ньютон был прав, считая алхимию возможной, – она просто не могла быть обеспечена химией того времени.

Эпоху открытий от Коперника до Ньютона обычно называют научной революцией.

Известный популяризатор науки Джеймс Глик отмечал, что “в XVII веке наука была младшим партнером культуры, а к XIX уже стала частью культуры, причем большей”. Светские дамы заказывали портреты с секстантами и телескопами у своих ног[283]. Ньютон отбрасывет такую большую тень, что его последователей можно легко недооценить (Айзек Азимов однажды заметил, что, когда ученые спорят между собой, кто же величайший ученый в истории, на самом деле они обсуждают, кто занимает второе место). Хотя столетие после смерти Ньютона дало гораздо меньше открытий, связанных с Солнцем, важные открытия делались и тогда. Так, были произведены первые измерения скорости света, появились идеи о планетах в других звездных системах, были сделаны первые сообщения о темных линиях в солнечном спектре, делались первые работы о связи облаков с Солнцем.

“Алхмик в своей мастерской”, изображение XIX века. В алхимии было много чепухи, но благодаря ей химия смогла развиться как наука (Courtesy of the Chemical Heritage Foundation Collections. An Alchemist in His Workshop, a nineteenth-century representation)

Один вопрос в особенности гипнотизировал как ученых, так и общественность: каково реальное расстояние от Земли до Солнца? Ни один из имевшихся расчетов не был убедителен. Ключевую роль сыграло прохождение Венеры между Землей и Солнцем – быстрое движение еле заметной точки по бурлящему солнечному диску[284]. Знаменитый третий закон Кеплера гласит, что куб расстояния планеты от Солнца пропорционален квадрату времени, за которое планета совершает полный оборот, и, соответственно, дает нам относительное расстояние каждой планеты от Солнца, но не дает никаких абсолютных цифр.

Хотя Венера проделывала данный путь в течение миллионов лет, впервые это заметил молодой ланкаширский викарий Джереми Хоррокс 24 нояб ря 1639 года (спеша домой из церкви, где ему пришлось прочитать целых две проповеди). Викарий тут же понял, что, если наблюдать прохождение из двух достаточно отдаленных точек, полученных результатов будет достаточно для вычисления расстояния до Венеры, расстояния от Земли до Солнца и, наконец, размеров всей Солнечной системы. Послав приятеля наблюдать за этим явлением в Манчестер, Хоррокс произвел собственные наблюдения и удовлетворенно записал: “Объект моих самых трепетных надежд… только что полностью перекрылся с солнечным диском”[285]. Однако его амбициям не суждено было реализоваться, поскольку наблюдательный пункт друга викария оказался расположен слишком близко и потому был бесполезен. Миновало еще два прохождения, когда подобное наблюдение наконец завершилось успешно[286].

Усилия первопроходца были со стороны Хоррокса героической попыткой новичка. В 1716 году Галлей напечатал A New Method of Determining the Parallax of the Sun, or His Distance from the Earth (“Новый метод определения параллакса Солнца, или его расстояния до Земли”), но в этом памфлете он защищал гораздо более сложный подход – задействовать как можно больше наблюдателей по всему миру. В 1761 году научное сообщество было подготовлено к следующему прохождению. Парижанин Жозеф Николя де Лиль, построивший обсерваторию и школу астрономии в Санкт-Петербурге, послал астрономов в Индию, на остров Св. Елены и в другие места, чтобы обеспечить наблюдение прохождения 6 июня, в шестидесяти пунктах были размещены как минимум сто двадцать наблюдателей. Но само событие случилось в разгар Семилетней войны, и двое ученых, астроном Чарльз Мейсон и землемер Джереми Диксон (Диксон должен был провести демаркационную линию Мейсона – Диксона), оказались на борту корабля, атакованного французским фрегатом на пути к Суматре, одиннадцать членов экипажа погибли. Наблюдениям Мейсона и Диксона помешала война, а облака помешали остальным.

Астрономы не пали духом и приготовились к следующему прохождению, по расчетам, ожидавшемуся 3 июня 1769 года. На этот раз по всему земному шару было организовано семьдесят шесть наблюдательных пунктов. Королевское общество послало наблюдателей в северную Норвегию и Гудзонов залив, а также заплатило Джеймсу Куку (1728–1779), тридцатидевятилетнему морскому лейтенанту, за наблюдение из Таити.

Двадцать шестого августа 1768 года Кук отплыл из Англии на борту девяностовосьмифутового судна Endeavour – “помеси голландского сабо и гроба”, как его описал один историк[287], – взяв с собой профессионального астронома Чарльза Грина, ящики с телескопами, часами и метеорологическим оборудованием, а также семнадцать овец, несколько десятков кур и уток и молочную козу, уже бывавшую в кругосветном путешествии. Французское Морское министерство приказало всем своим командирам воздержаться от столкновений с Куком и немедленно отпустить его, если он все же попадет в плен, по той причине, что тот “занят важным для человечества делом”. Кук благополучно добрался до Таити без помех со стороны Франции.

Поскольку до прохождения оставалось еще шесть недель, Куку пришлось отдать строгие приказания, запрещающие торговлю металлическими предметами с аборигенками, которые украшали бедра замысловатыми татуировками из стрел и звезд и с готовностью отдали бы свою благосклонность в обмен на гвоздь или два (сначала курс был “один корабельный гвоздь за простое совокупление”[288], но потом быстро наступила гиперинфляция). Энтузиазм команды предыдущего корабля, “Дельфина”, был таков, что из судна выдернули почти все гвозди, что привело его в непригодное состояние. Несмотря на старания Кука, металлические предметы – столовые приборы, скобы, кухонная утварь – продолжали исчезать.

Endeavour вернулся в Англию 17 июля 1771 года. Тридцать шесть членов экипажа (первоначально состоявшего из девятисот сорока одного человека) – многие были подростками – умерли в дороге; средний уровень потерь по тем временам. Наблюдения Кука, как и все остальные, были отправлены в Париж, где их должен был суммировать и исследовать ведущий французский астроном того времени Жозеф Лаланд. По мере анализа результатов стало ясно, что множество наблюдателей не смогли обеспечить точность фиксации момента, когда край планеты и звезды соприкоснулись. Когда черная точка прикоснулась к краю диска, она будто поглотилась Солнцем (чья грань была громко прозвана терминатором), и это явление внесло смятение в ряды наблюдателей, которые разошлись в точной оценке момента на несколько секунд[289]. Несмотря на эти вариации (а также еще несколько проблем, вызванных разницей в часовых поясах), Лаланд смог вычислить расстояние – 95 млн миль, всего на 2 млн больше сегодняшней оценки. В 1894 году американский астроном Уильям Харкнесс предъявил цифру в 92 797 000 миль, которая уже почти не отличается от современного значения, колеблющегося между 92 955 887,6 и 92 750 600,02.

Последнее прохождение случилось 8 июня 2004 года. Я наблюдал это явление в последние часы, находясь на крыше высотного дома в Манхэттене. К тому моменту, как выразился один из наблюдателей, “мушка на лице Солнца переместилась на другую щеку”. Край Венеры казался изменчивым в волнах жара, поднимавшихся от города в атмосферу. Я помню ощущение незначительности планеты, которая казалась полностью поглощенной гигантской звездой, муравьем, ползущим по светящемуся апельсину. Когда Венера достигла точки терминатора, возникло ощущение, что в нижнем правом углу Солнца просверлили дырку, чтобы маленький гость мог сбежать. Сегодня ученые могут измерить расстояние до планет с помощью радаров, а зонды, висящие в глубоком космосе, сделали масштабные кампании по наблюдению прохождения достоянием истории. Многие ли вспомнили драматическую историю этих наблюдений во время последнего прохождения, 6 июня 2012 года?

Венера еще могла занимать умы астрономов или правительств, но интерес общества уже переместился на другие вещи. Всевозможные виды игры со светом стали предметом повального увлечения со времен Сэмюеля Пипса – камера обскура, камера люцида и прочие световые фокусы, но даже здесь телескопы занимали особое, почетное место. С появлением все более мощных моделей небо становилось доступной картой. Американский поэт Тед Кузер облек в стихи это новое чувство первооткрывательства:

Эта труба, что протыкает заслон,

Что удерживает вселенную,

Что берет на себя часть давления,

Удерживая вес неведомого

От того, чтоб сорваться[290].

Прибор Галилея использовался как для земных, так и для небесных целей, обычная модель была 5–6 футов в длину. Увеличение достигалось простым раздвиганием тубуса, к 1670 годам это расстояние достигало 140 дюймов. Телескопы соревновались друг с другом за степень увеличения, но этот метод имел свои пределы, и вплоть до 1730-х дальнейшего роста не происходило. Затем Джеймс Хедли и другие разрешили некоторые практические сложности, с самого начала сопровождавшие ньютоновские прототипы, и вскоре появились телескопы-рефлекторы с основным зеркалом до 6 дюймов в диаметре. Исследователи неба получили целый арсенал инструментов: ахроматические линзы (чтобы устранять дефекты рассеянного света), оптическое стекло, микрометр (способный измерять малые углы) и крест нитей (для точного нацеливания).

К 1780 году рефлекторный телескоп с параболическими отражателями в руках Уильяма Гершеля позволил солнечной астрономии стать отдельной областью исследований. Постройка мощнейших телескопов своего времени была только одним из достижений Гершеля. Третий ребенок гобоиста ганноверского военного оркестра, он тоже играл в этом оркестре с четырнадцати до девятнадцати лет, пока его батальон не задействовали во время Семилетней войны. По совету отца он бежал в Англию (“Никто не обратил внимания”, – заметил Гершель, хотя курфюрст Ганновера находился в британском подчинении) и зарабатывал на жизнь как переписчик нот, дирижер, композитор, учитель музыки, скрипач и органист на светском курорте в Бате. Вскоре он занялся, по его словам, “сооружением небес”, изготавливая из древесины “элегантные, как виолончели” тубусы телескопов и окуляры из эбонита, использующегося для гобоев, – все для увеличения того, что он называл “пронизывающей пространство силой”.

В 1781 году Гершель стал первооткрывателем планеты, когда идентифицировал Уран, лежащий дальше, чем ожидалось: в один момент это открытие удвоило радиус известной солнечной системы и более чем удвоило финансы Гершеля, позволив ему полностью посвятить себя астрономии. Приглашенный на аудиенцию королем Георгом III, он писал своей сестре Каролине: “Я построю такие телескопы и увижу такие вещи… то есть я буду к этому стремиться”. К 1783 году этот “немецкий музыкант средних лет, проживающий в английском курортном местечке”[291], проводил ночи на своем наблюдательном посту, натирая руки и лицо сырой луковицей от холода, и установил общее направление и скорость движения Солнца в пространстве, а также проанализировал движение семи ярких звезд, чтобы доказать их зависимость от притяжения Солнца.

Два года спустя с помощью своей терпеливой сестры он использовал подсчеты звезд для картографирования Млечного Пути, и это подкрепило предположение Томаса Райта о том, что галактика – гигантский вращающийся диск, внутри которого располагается и наше Солнце. Древним астрономам слабая светящаяся полоска, видимая поперек неба в ясную ночь, напоминала струйку молока от какой-то небесной коровы. Греки называли ее Молочным Кругом, знаменитые своими дорогами римляне – Via Lactea. Демокрит оказался отчасти прав, предположив, что Млечный Путь состоит из звездных скоплений, но Гершель показал, что в действительности это колоссальный конгломерат звезд, туманностей, газа и пыли. “Он открыл полторы тысячи вселенных! – восклицала романистка Фанни Берни, посетив Гершелеву обсерваторию в Виндзоре в 1786 году. – И сколько еще он откроет!”[292]

К началу XIX века Гершель нанес на карту и классифицировал около 2,5 тыс. рассеянных, облакоподобных структур, которые он назвал nebulae (“облака” на латыни, в русском языке закрепилось слово “туманность”). Туманность Ориона, клубок смерзшегося газа на расстоянии 1600 световых лет[293]от Земли, астроном назвал “хаотической материей для грядущих сыновей”, что оказалось совершенно точным названием. Солнечное ядро Гершель описывал как “прочный шар незажженного вещества”.

В тот же год, год Первой симфонии Бетховена и лирических баллад Вордсворта и Кольриджа, Гершель расширил ньютоновы опыты над светом, показав, что за пределами красного конца солнечного спектра обнаруживаются невидимые лучи. В один прекрасный день он записывал результаты своих опытов по регистрации нагревательной силы разных цветов, когда световой спектр ложился на специальный набор термометров. Удивленный ученый обнаружил, что больше всего нагревается термометр, расположенный за пределами красного конца спектра, где цвета заканчивались: “Горячее излучение, по крайней мере частично, состоит, если позволите мне такое выражение, из невидимого света”. Опираясь на исследования Гука столетней давности, Гершель открыл инфракрасное излучение – передачу тепла, что показало, как солнечное тепло почти полностью передается невидимыми лучами, которые ведут себя как свет, но неразличимы для глаза[294]. Открытие Гершеля позволит ученым оценивать по звездному свету, как далеко звезда находится и какого она размера.

Гершеля продолжало интересовать и научное оборудование. Астрономы уже имели вполне адекватные инструменты для наблюдения за движением Солнца, его расстоянием от Земли и других планет, колебаниями земной оси, но необходимых средств для тщательных исследований им не хватало. Уильям вместе с сыном Джоном (1792–1871), тоже астрономом, взялся за постройку телескопа с фокусным расстоянием в 20 футов и 18,25-дюймовым объективом – первым в ряду инструментов, в буквальном смысле изменивших мир. Один из биографов Гершеля охарактеризовал его достижение как превращение “звездного неба из статичной декорации, относительно которой можно было отмечать положение планет, в бескрайнюю динамичную сферу, где звезды зарождаются из облаков туманной материи”[295]. В этом Гершель опирался на размышления Иммануила Канта (1724–1804), который во “Всеобщей естественной истории и теории неба” (1755) предположил, что Солнце и планеты сформировались путем конденсации вращающегося диска межзвездной материи. Кант (сам бывший умелым шлифовальщиком линз) предложил “гипотезу туманностей” в качестве объяснения образования планет, рассудив, что неплотные туманности – непрозрачные облака пыли и газа, которые впервые попали в область наблюдения при его жизни, – долж ны схлопываться под влиянием силы тяготения. После этого они должны растянуться в подобие диска, из которого уже со временем формируются звезды и планеты. Кант, впрочем, не был математиком, и его идеи не имели убедительной научной базы, пока великий Пьер-Симон Лаплас (1749–1827) не заявил, что Солнце и солнечная система были образованы в результате гравитационного коллапса вращающегося газового облака. Весь XIX век считалось, что Лаплас обеспечил математическое доказательство (которого не было у Ньютона) тому, что солнечная система функционировала подобно часам[296]. В такой вселенной не было места для Бога. “Гражданин первый консул, в этой гипотезе я не нуждался”, – высокомерно ответил Лаплас Наполеону на вопрос о том, как Создатель вписывается в его конструкцию. Ко времени смерти Лапласа в 1827 году все основные фронтовые линии в научных спорах уже были проложены достаточно четко. Астрономы потеряли былое восхищение перед Солнцем, их уже не очень волновало его место в божественной схеме. Они начали рассматривать его как звезду, их интересовало, из чего оно состоит, как воздействует на Землю, что может сказать об остальной вселенной. До Ньютона Солнце было великим объектом, оказывающим давление, обусловливающим собой, своим жаром и слепящим светом существование человечества. Ньютон же показал, что Солнце, по сути, больше притягивает и имеет неосязаемую и неограниченную власть, организующую все вокруг него.

Данный текст является ознакомительным фрагментом.