Глава 17 Дыхание жизни

We use cookies. Read the Privacy and Cookie Policy

Глава 17

Дыхание жизни

“Дорогой профессор, мы учимся в шестом классе. У нас в классе случился спор, все разделились – нас шестеро на одной стороне, против нас двадцать один человек… Спор был о том, останутся ли живые существа на Земле, если Солнце погаснет… Мы считаем, что останутся… Скажите, что вы думаете? С любовью и конфетками, шестеро маленьких ученых.”

“Дорогие дети, меньшинство иногда оказывается правым, но не в вашем случае. Без солнечного света не будет ни муки, ни хлеба, ни травы, ни скота, ни мяса, ни молока, все замерзнет. И никакой ЖИЗНИ”[502].

Переписка школьников с Альбертом Эйнштейном, 1951 год

Солнце, занятое всеми этими планетами, вращающимися вокруг него и зависящими от него, помогает винограду зреть, как будто ему больше нечего делать[503].

Галилео Галилей

Несколько раз в месяц Билл Алберс, швейцар дома, в котором я живу в Нью-Йорке, просовывает мне под дверь конверты с материалами из журналов и газет. Материалы разнятся от безумных “Хотите верьте, хотите нет: у креветки-пистолета когти способны выстреливать ударными волнами, чтобы парализовать добычу; они создают поток пузырьков той же температуры, что поверхность Солнца!” до заумных статей, посвященных солнечной энергии или последним исследованиям солнечных пятен. Однажды я сказал ему, что пишу о воздействии солнца на растения и животных и для понимания поведения последних мне нужно начать с объяснения фотосинтеза. Он спросил, как у меня идут дела. “Медленно, – ответил я, – процесс очень сложный”. “Сложный! – повторил он со смехом. – Это же элементарно – просто повторите то, что выучили в школе”.

Может быть, он и прав. Я прекрасно помню, как нас учили, что наши топливо и пища происходят от растений, а растительная энергия в свою очередь – от солнечного света. При этом главное различие между нами и растениями состоит в том, что мы (как и другие животные) получаем энергию от Солнца опосредованно, в форме пищи, в то время как растения получают ее непосредственно из того же источника. Этот процесс получения энергии растениями называется фотосинтезом (от греческих слов со значением “соединять со светом”) и происходит в фототрофах – бактериях и растительных организмах, которые сами синтезируют себе пищу с использованием света, превращая физическую энергию в химический процесс. Большинство растений попадают именно в этот класс.

При помощи сложных комплексов, называемых хлорофиллами (греч. ?????? – зеленый, ?????? – лист), растения используют водород из воды для преобразования углекислого газа в более сложные углеродные образования, включая сахарные молекулы (такие как глюкоза). Кислород, остающийся от воды, высвобождается в газовом состоянии – этот отход жизнедеятельности растений, хотя и драгоценный для нас, имеет и свои отрицательные стороны. Как замечает Билл Брайсон в “Краткой истории почти всего на свете”, кислород, хотя и жизненно необходим для животной жизни на Земле, токсичен гораздо чаще, чем безопасен: “Именно от него горкнет масло и ржавеет железо. Даже мы переносим его лишь до определенной точки. Его содержание в клетках нашего организма составляет лишь десятую часть от содержания в атмосфере[504]”.

Углерод попадает в листья в результате энергетического воздействия солнечного света, а листья передают материал для формирования ствола у дерева или лепестков у цветка. Хлорофилл внутри них поглощает энергию из фиолетовой и красной частей солнечного спектра и посредством серии химических реакций преобразует ее, направляя на смещение электронов в определенных молекулярных цепочках. Солнце входит в контакт с более чем 64 млн кв. км листьев ежедневно. Но только от 1 до 3 % света, падающего на зеленое растение, перерабатывается в биоэнергию, остальное теряется при передаче, отражении или неэффективном поглощении[505].

Фотосинтез происходит в хлоропластах, особых конструкциях внутри клетки обычно шириной всего в несколько тысячных миллиметра. В них содержится хлорофилл и другие химические вещества, в частности энзимы (“регуляторы”: протеины, контролирующие специфические реакции). Ученые еще не до конца понимают сложную биохимию фотосинтеза, хотя это самая важная метаболическая инновация в истории эволюции нашей планеты. Каждый летний день средний акр зерна производит объем кислорода, достаточный для удовлетворения потребностей около 132 человек. Если бы не этот процесс, мы все исчезли бы в течение срока одной человеческой жизни, настолько высоки скорости вымирания живых существ.

Еще в 1640-х годах исследователи предположили, что растениям необходимы воздух и вода для роста, а уже к началу XVIII века начали идентифицировать отдельные газы, вовлеченные в процессы горения, дыхания и фотосинтеза. Затем случился большой прорыв, и все благодаря пивоварне. В 1772 году полным ходом шла подготовка ко второму путешествию Кука – отправлению на поиски Неведомой южной земли (Terra Australis Incognita). Нескольким ученым было разрешено присоединиться к экспедиции, и Королевское общество поначалу одобрило включение в ее состав астронома и ботаника Джозефа Пристли (1733–1804). Однако его известное свободомыслие в религиозных и политических вопросах привело к отзыву его кандидатуры. Пристли взамен получил оплачиваемое место литературного компаньона лорда Шелберна, крупного вига. Будучи на службе у Шелберна, Пристли взялся за эксперименты.

Перед этим Пристли работал в Лидсе, где его дом примыкал к пивоварне. Там он принялся экспериментировать с пара?ми, выделяющимися в процессе брожения пива. Пары оставались в чанах на глубине фута или около того и не смешивались с воздухом, находящимся выше. Это был углекислый газ (или “неподвижный воздух”, как его назвал Пристли), и эксперименты Пристли показали, что зажженные свечи при помещении в этот газ тут же гаснут. Он понимал, что воздух, которым мы дышим, отличается от углекислого газа, но не понимал, какие еще формы воздуха существуют. Вскоре после своего назначения к Шелберну ученому удалось показать, что воздух является смесью газов, а не единым элементом (как предполагали греки). Пристли соглашался с принятой тогда теорией флогистона, почти невесомой субстанции, необходимой для возникновения огня. С несколько бо?льшим основанием он выделил девять отдельных газов, считая их загрязненными вариантами “нормального” воздуха. Эти газы позднее получили названия оксид азота (веселящий газ), аммиак, оксид серы, сероводород, оксид углерода (угарный газ), хлор, тетрафторид кремния, хлороводород и нечто, названное “дефлогистированный воздух” – неуклюжий термин для того, что потом будет названо кислородом (калька с греч. ???? – кислый и ?????? – рождаю).

Пристли показал, что в этом газе свеча горит ярче и даже мыши в нем выживают (предыдущие эксперименты привели к скорому концу нескольких мышей, наглотавшихся пивных паров)[506]. Газ был “в четыре-пять раз лучше [для дыхания], чем обычный воздух”, сообщал он: эта оценка, учитывая наше нынешнее знание о составе воздуха (21 % кислорода, остальное в основном азот), была поразительно точной. Ученый обнаружил, что свеча в закрытом контейнере постепенно гаснет, но если туда поместить веточку мяты, то пламя вновь усиливается, – так стало ясно, что растения выделяют кислород.

Пристли продвинулся еще дальше – он показал, что кислород подхватывается кровью в легких, а также что вода состоит из водорода и кислорода в соотношении два к одному, если измерять по объему газа. Но на этом его достижения закончились. Хотя он и смог продемонстрировать, как растения обновляют воздух, истраченный животными, он не сделал вывода о необходимости солнечного света для процесса. Это представляется странным, поскольку Пристли был неплохо знаком с работами Стивена Гейлса (1677–1761), который предполагал, что листья являются “легкими” растений, и задавался вопросом: “Не может ли свет, свободно проникая в широкие поверхности листьев и цветов, способствовать также облагораживанию элементов растения; ведь сформулировал же Ньютон в характерной испытующей манере: “Не могут ли массивные тела и свет переходить друг в друга?”[507]”.

К сожалению, вскоре Пристли потерял интерес к науке и посвятил себя проповедям против божественной природы Христа и кампаниям против рабства. В 1791 году толпа сторонников “церкви и короля” до основания разрушила молитвенный дом и дом Пристли, превратив в угли лабораторию и все остальное. Восемь бунтовщиков и один констебль погибли. Великий ученый отправился в Америку, а эстафетная палочка перешла к голландскому ботанику Яну Ингенхаузу (1730–1799), чьи исследования показали и то, что выдохшийся воздух может быть восстановлен только зеленой частью растения, и то, что для этого требуется участие солнечного света[508].

Ингенхауз также открыл, что именно энергия Солнца в световой форме, а не его тепло было важно для дыхания растений. Он продемонстрировал, что под воздействием света растения впитывают углекислый газ через крохотные поры на поверхности своих зеленых частей, выделяя микроскопические пузырьки кислорода. В темноте пузырьки постепенно прекращили выделение. “Представляется более чем вероятным, – писал ученый, – что у листьев более одного предназначения”.

Вероятно, дерево получает некоторую пользу от листьев, которые собирают влагу из воздуха, дождя и росы, потому что была найдена значительная польза для роста деревьев в поливании ствола и листьев время от времени… Возможно, окажется вполне вероятным, что одна из величайших лабораторий природы по очистке воздуха в нашей атмосфере располагается в веществе листьев и приводится в действие под влиянием света[509].

Научная революция набирала скорость, распутывание загадки фотосинтеза от нее не отставало. В 1845 году Юлиус Роберт фон Майер (1814–1878) объяснил, что растения преобразовывали свет в химическую энергию. Вопрос, как именно это происходило, будет занимать умы ученых еще более ста лет. В 1920-е было подтверждено, что фотосинтез состоит из ряда последовательных этапов, куда входят два отдельных и противоположных использования света – фотоокисление воды и фоторедукция (то есть дезоксидация) углекислого газа.

В 1950–1960-е американский биохимик Мелвин Калвин установил, что световые реакции, генерирующие хлорофилл, не растянуты во времени, а преобразуют солнечную энергию мгновенно[510]. Работая с клетками зеленых водорослей, он смог идентифицировать как минимум десять промежуточных продуктов, образующихся в течение нескольких секунд. За последние десятилетия исследователи сложили по частям историю о том, как фотосинтез, необходимый для процветания биосферы, впервые появился на Земле[511]. Другие исследователи пытаются воспроизвести химические процессы фотосинтеза в поиске новых источников энергии. Общеевропейский проект Solar-H нацелен на поиски способов выделения водорода с помощью солнечного света, это должно помочь решить проблему хранения энергии. Один шведский консорциум изучает искусственные аналоги фотосинтеза. Другие группы разрабатывают водоросли с маленькими антеннами для генерации местной низкотехнологичной энергии биомассы. И так далее.

Фотосинтез может быть вполне понятен на одном из уровней восприятия, но (как в итоге решили мы с Биллом Алберсом) он совсем не прост. В самом деле, исследования фотосинтеза – это растущая индустрия, голова идет кругом от некоторых вопросов, занимающих ученых последние годы: как растения реагируют на слишком большой объем света? Что делают фотосинтезирующие бактерии внутри кристалликов песка в пустыне? Если запустить процесс фотосинтеза в обратном порядке, могут ли вновь образоваться молекулы воды? Как северная и южная части виноградника различаются по уровню производства сахара? По крайней мере часть этих вопросов теперь получили ответы.

Реакции естественного мира на солнце совершенно удивительны. Некоторые виды моллюсков, которые регистрируют дневной свет, откладывают определенный слой клеток, ширина которого – сэндвич дневных отпечатков – прямо соотносится с количеством часов дневного освещения, под которым лежал моллюск, что позволяет вычислить возраст моллюска по количеству слоев. Коралловые окаменелости, найденные в Девоне на юге Англии, обнаруживают поразительную периодичность в кольцах роста – около четырехсот в каждом годовом наборе. Эта улика позволяет нам вычислить, что около 370 млн лет назад в году насчитывалось около четырехсот дней, каждый из которых длился около 22 ч[512].

Многие мифы повествуют о силе солнца в воздействии на природу. “…Такое божество, как солнце, плодит червей, лаская лучами падаль”[513], – говорит Гамлет, отражая одно суеверие. В “Антонии и Клеопатре” находит отражение другое: солнечные лучи, которые способствуют спонтанному размножению змей, – старая байка, опровергнутая лишь в XVII веке. Столетие спустя французский изобретатель Жозеф Нисефор Ньепс (1765-1833) ввел термин “актинизм” для обозначения способности Солнца производить химический эффект в объектах неорганического происхождения. Некоторые минералы, например белый мрамор, начинают фосфоресцировать – испускать свет – после долгой выдержки в лучах солнца. Ньепс заметил, что “гранитные скалы, каменные структуры и металлические статуи – “все проявляют признаки наступающего разрушения после нескольких часов солнечного облучения”[514]. Более того, от солнца вспыхивают пожары, тонут корабли, у которых искривляется обшивка, а в самых жарких районах планеты даже “ [камни] сжариваются дотла”[515]. В 1814 году британский ученый Хэмфри Дэви подверг алмаз интенсивному нагреванию с использованием большого увеличительного стекла: в конечном счете драгоценный камень вспыхнул и сгорел дотла, оставив тонкую угольную крошку в доказательство того, что был всего лишь кусочком угля.

Юлиус фон Сакс (1832-1897), один из величайших немецких ученых XIX века, систематизировал явление, названное им фототропизмом (от греч. ??? – свет, ?????? – поворот), – отслеживание солнца организмом. Я наблюдал это явление в действии, когда в июле 2006 года побывал на крайне современной томатной ферме в южной Испании – саженцы поворачивались дважды в день, сперва одной стороной, потом другой, их стебли всегда наклонялись в сторону солнца, чтобы вырасти быстрее и сильнее[516].

Растения меняют свое положение с необычайной точностью, чтобы уловить как можно больше солнечного освещения: достаточно посмотреть вверх на лесной покров – будет видно, что листья образуют почти полностью закрытый свод, складываясь как кусочки пазла. Растения не сотрудничают, как добрые соседи, они яростно соперничают за доступ к свету. Чем больше света они поймают, тем выше их шансы на выживание, так что некоторые растения выработали для этого чрезвычайно изобретательные механизмы. Например, гигантское съедобное растение из семейства ароидных, которое произрастает в болотах тропического леса на Борнео, не только имеет листья шириной в 10 футов, а суммарную площадь поверхности – более 30 кв. фу тов. Вдобавок к этому обратная сторона листьев у него покрыта особым пурпурным пигментом, который улавливает свет после того, как тот пройдет сквозь лист, словно давая хлорофиллу вторую порцию. Бегонии, растущие в том же лесу, на внешней поверхности листьев выработали прозрачные клетки, которые действуют как крошечные линзы, собирая свет и фокусируя его на хлорофилле, находящемся внутри.

Как правило, соперничество приводит к вытягиванию растений в высоту, но для этого нужна конструкция, не допускающая падения. Поэтому корни становятся толще и распространяются либо в ширину, либо вглубь. Деревья нашли чрезвычайно эффективное решение проблемы фотосинтеза, но при этом не следует слишком привязывать свою точку зрения к земле.

Подумайте о березе зимой. Ее листья облетели, ее конструкция выделяется темными линиями на фоне серых холодных облаков… Попробуйте избавиться от устоявшегося взгляда на деревья, повернитесь спиной, наклонитесь к земле вниз головой и посмотрите на дерево из этого положения. Оно уже не выглядит выросшим из земли, становясь больше похожим на нечто вытянувшееся с небес… Туловище дерева не сделано из почвы – напротив, скорее почва в значительной части состоит из деревьев… Деревья созданы из солнца, ветра и дождя. Земля же для них – это просто опора[517].

В жизни некоторых растений солнце занимает еще большее место. К таким относится огромное семейство цветущих растений, сложноцветные, особенно подсолнухи и другие, похожие по типу соцветия на маргаритки (в английском языке этот цветок называется daisy, от др.-англ. d?ges eage – дневной глаз). Подсолнух, чье умение поворачиваться вслед за солнцем было впервые научно описано Леонардо да Винчи в его ботанических исследованиях, был привезен испанцами в Европу около 1510 года с американского континента. У ацтеков этот цветок был священным, а у инков считался эмблемой солнечного божества. Оказавшись в Европе, подсолнух за несколько десятилетий стал символом преданности из-за своего верного следования за солнцем[518].

Дэвид Аттенборо начинает свой сериал “Невидимая жизнь растений” со слов: “Побег, находящийся в темноте, будет ползти в сторону единственной щели, откуда пробивается свет. Растения способны видеть[519]”. Вполне простительная гипербола. Тяга к свету сохраняется даже при крайних температурах: некоторые полярные животные регулярно метят свою территорию, определяя местонахождение Солнца относительно каких-то ориентиров на земле, а антарктический лишайник Lecidea cancriformis способен к фотосинтезу при температуре до –20 °C. Полярный мак утром смотрит на восток, а днем начинает склоняться к западу (движение обеспечивают двигательные клетки гибкого сегмента у основания цветка, так называемой листовой подушечки). Высокогорный снежный лютик ориентируется на солнце сходным образом, солнечный свет помогает ему поддерживать оптимальный уровень температуры и влажности, способствует более эффективному привлечению насекомых. Природа никогда не сдается. Природа – это вечное приспособление.

В 1745 году шведский ботаник Карл Линней придумал цветочные часы в дополнение к солнечным: они указывали время с точностью до получаса при помощи цветов, раскрывающих и закрывающих свои соцветия в определенное время дня. Эти часы были нарисованы в 1948 году (drawing by U. Schleicher-Benz)

В 1920 году в рамках исследований, проводимых Министерством сельского хозяйства США, было обнаружено, что цветение многих растений обусловлено количеством получаемого ими дневного света. Для объяснения этой реакции был введен термин “фотопериодизм”. Растения были распределены по категориям: короткодневные, которые не зацветают при суточной освещенности, превышающей определенное количество часов; длиннодневные – не зацветающие при недостатке часов освещенности; нейтральные – зацветающие независимо от длительности освещения. Далее, обнаружилось, что длительность темного времени суток также критична для зацветания растений. Например, короткодневные растения расцветают, когда ночи длинные, а долгодневные – когда ночи короткие или вовсе отсутствуют. Конечно, разговор с любым опытным сельским жителем привел бы к схожим выводам, ведь даже названия многих растений давно отражают эту чувствительность к свету и темноте. По крайней мере пятьдесят видов цветов соблюдают регулярное время открытия и закрытия, некоторые из них носят соответствующие названия: так, calendula (ноготки, в английском заимствовавшие свое имя от лат. calenda – первый день месяца) сперва превратились в gold-flowers (сейчас под этим именем известны совершенно другие цветы – хризантемы), затем по ассоциации с Девой Марией стали Marys gold и, наконец, marigolds, при этом про них известно, что они раскрывают цветы только в часы самого яркого солнца.

Как говорит Пердита в “Зимней сказке” Шекспира,

Вот ноготки, что спать ложатся с солнцем

И с солнцем пробуждаются в слезах[520].

Очный цвет полевой (в английском языке он носит разнообразные названия, в том числе “пастушьи часы” и “барометр бедняка”) раскрывается летом чуть позже семи утра и закрывается сразу после двух часов дня, а когда ожидается дождь, он вообще не раскрывает свои цветы. Многие растения, не обладающие говорящими названиями, тем не менее тоже раскрывают и закрывают цветы по достаточно строгому расписанию. Салат, например, расправляет листья в семь, а сворачивается обратно в десять утра, и т. д. Ориентация на солнце у таких “часовых” цветов была использована на практике в 1751 году, когда Карл Линней (1707–1778) придумал часы, созданные из цветов. Время можно было установить, увидев (или унюхав), какие именно цветы раскрылись. Чередование было устроено довольно сложно, но по крайней мере одна из последовательностей раскрытия цветов выглядела так:

Семь – восемь утра: нарциссы

Восемь – девять утра: гербера (или арктотис)

Девять – десять утра: горечавка

Десять – одиннадцать утра: эшшольция

Полдень: закрывается вьюнок пурпурный, раскрывается козлобородник

Четыре дня: ночная красавица

Четыре – пять вечера: закрывается эшшольция

Шесть вечера: вечерняя примула и луноцвет

Восемь – девять вечера: лилейник и нарцисс закрываются

Девять – десять вечера: душистый табак

Десять вечера – два ночи: ночной цереус

Когда Линней высаживал такие часы в саду своего летнего дома под Уппсалой, он учитывал разницу в широте – например, он считал, что козлобородник будет раскрываться там в три часа ночи, чтобы встретить рассвет полярного дня, и соответственно располагал свои цветы[521]. В последнее время разнообразные виды цветочных часов появились во многих местах, в том числе и в столь отличных друг от друга, как Тегеран (Иран) и Крайстчерч (Новая Зеландия). Но их точность, конечно, очень приблизительна, поскольку цветы крайне зависимы от милостей погоды[522].

Исследования, начатые в 1960 году, обнаружили, что каждая разновидность растений отражает свет по-разному, так что спутник из космоса может идентифицировать растительную жизнь в любом уголке планеты. В 1972 году Соединенные Штаты, во главе которых тогда находился Никсон, озабоченный планами Советского Союза по захвату мирового господства, создали рабочую группу по оценке планируемого Советами урожая. Как пишет Дэн Морган, “информация о советском урожае рассматривалась как разведданные первостепенной экономической важности с определенными последствиями для экономической безопасности Соединенных Штатов”[523]. Несколькими месяцами позднее был запущен LACIE (Large Area Crop Inventory Experiment), эксперимент по учету урожая на больших площадях, а к 1977 году американские спутники в точности предсказывали, сколько уродится пшеницы у империи Зла, за шесть недель до урожая. Судя по всему, вскоре после этого программа LACIE была свернута, но, возможно, с тех пор уже была развернута какая-то новая форма сельско-космического шпионажа. Например, известно, что в 1995 году американский флот проводил исследования, может ли цветение биолюминесцентных водорослей оказаться полезным для отслеживания подводных лодок (нет, не может). Но между 1992-м и 2001-м годами научная группа MEDEA (Measurements of Earth Data for Environmental Analysis, Исследования данных планеты для анализа окружающей среды) порекомендовала федеральному правительству вести наблюдение за окружающей средой. Эл Гор активно лоббировал возрождение этой программы, и в январе 2009-го было сообщено, что “лучшие ученые и разведчики страны сотрудничают, чтобы использовать ресурсы разведслужб, включая спутники-шпионы и другие засекреченные устройства, для определения сложнейших изменений в окружающей среде”. Таким образом, использование спутников никогда не прекращалось, только теперь разведка помогает окружающей среде, а не наоборот[524].

В животном мире часто происходит то же, что и в растительном. Луна-рыба (в английском – sunfish, рыба-солнце), поразительно уродливое, почти бесхвостое создание, вырастающее до двух метров в длину, – самая тяжелая костная рыба на свете – живет в глубинах океана в сезоны бурь (ее называют “морским лежебокой”) и поднимается на поверхность погреться на солнышке в ясную погоду. В пустыне Сахаре муравьи-фуражиры ориентируются на поляризацию солнечного света и на магнитное поле Земли, чтобы потом воссоздавать в памяти кратчайший путь домой. Такие животные, как альбатросы и черепахи, которые проводят почти всю жизнь в глубине моря или на его поверхности, используют солнце как навигационный маяк. Крошечный песчаный крабик Talitrus, нервное вещество которого достигает едва ли миллиметра в длину, способен вычислить время дня с точностью до получаса исходя из угла, образованного его телом и положением солнца. В соответствии с изменением освещенности множество животных способны сезонно менять расцветку, изменяя пигментацию и маскировочную окраску вместе с окружающей средой.

Солнце играет роль и в репродуктивной деятельности животных. По мере захода солнца косяки сельди сбиваются плотнее и заплывают на мелководье, где мечут икру, защищенные своей многочисленностью. Когда солнце встает, косяки рассеиваются[525]. Множество ярких тропических птиц живут в верхнем слое леса, где они нежатся в море солнечного света и могут выставлять свою красоту потенциальным партнерам с максимальным эффектом. Другие пернатые с буйной расцветкой пользуются пробивающимися солнечными лучами, достигающими нижних уровней леса, чтобы устраивать брачные акробатические номера напоказ, мерцая раскраской в рассеянном свете “как танцоры под вращающимся дискотечным шаром”[526].

Бабочки геликониды используют поляризованный свет для выбора брачных партнеров, их использование визуальных сигналов в брачном выборе является примером использования света, которое также может обладать и адаптивной ценностью в густом лесу, где освещение сильно варьируется по цвету и интенсивности. Но встает вопрос, какая стимулированная солнцем деятельность находится за пределами нашего восприятия. “Некоторые птицы могут видеть то, чего люди просто не видят”, – говорит доктор Миеко Чу из Корнелльской орнитологической лаборатории; например, лазоревки различают друг друга с совершенно недоступной для человека точностью. Уже довольно давно известно, что птицы (как и некоторые ящерицы, рыбы и насекомые) способны видеть в ультрафиолетовом спектре. Но лишь в 1998 году ученые обнаружили, что некоторые виды оперений отражают волны, невидимые для человеческого глаза: в нашем глазу три типа колбочек, а у птиц четыре. Это открывает для них области спектра электромагнитного излучения за пределами нашего кругозора и сильно расширяет диапазон их цветовосприятия.

Летом 1944 года Карл фон Фриш (1886–1982), который в 1973 году разделил Нобелевскую премию по физиологии с Конрадом Лоренцем, обнаружил, что пчелы объясняют своим товаркам в улье, куда следует лететь, двигая задней частью тела. Пчелы могут “танцевать” два вида танцев – один круговой, другой в форме восьмерки, которые Фриш интерпретировал, приводя его собственный пример, как “нектар в 1,5 км отсюда, в 30° от солнца”. Он также установил режимы пчелиной коммуникации, показав их чувствительность к ультрафиолетовому и поляризованному свету. Они могут вылетать по направлению, которое корректируется в связи со смещением солнца, и даже прокладывать маршрут для отдыха через солнечные места. Это умение выдерживать постоянный угол по отношению к солнцу, несмотря на временной сдвиг, немцы называют очаровательным словом Winkeltreue[527].

Когда пчела прибывает обратно в улей, повстречав новые цветы, она танцует на площадке перед входом (пчелиная колония, населяющая улей, составляет 20 тыс. пчел зимой и 60 тыс. летом), сперва описывая окружность, потом пересекая ее, покачивая животом и энергично жужжа. Затем она входит внутрь и начинает заново: при достаточной стимуляции пчела может танцевать около 4 ч. Чем дальше пчела углубляется в улей, тем дальше оказывается источник пыльцы. А поскольку соты в улье расположены вертикально, танцевальные па не могут напрямую указывать на цветок и вместо этого ориентированы на солнце. Если пчела пересекает окружность по вертикали, тогда источник пищи находится на одной линии с солнцем. Если цель, скажем, в 15° правее, то танцевальное движение будет пересекать окружность на 15° правее от вертикали. Пчелы-работники окружают танцора, запоминают информацию и затем вылетают на поиски. Когда они возвращаются с добычей, они также танцуют, и вскоре начинает активно собираться рабочая сила[528]. В восторге от своего открытия Фриш принялся за изучение того, каким образом пчелы могут передавать информацию о положении солнца. В это было сложно поверить, но ученый все-таки сделал вывод, что пчелы могут предсказать положение солнца в любой заданный момент времени, так что, если бы они танцевали без перерыва, постоянно меняя картину танца, они воспроизводили бы движение солнца[529].

Муравьи и пауки тоже находятся среди насекомых, которые используют поляризованный свет в качестве оптического компаса. Последние специально оснащены парой дополнительных глаз. Эти глаза не видят в обычном смысле слова, но у них есть встроенные фильтры, которые определяют направление поляризации. Активность у пауков обычно наступает после захода солнца, они используют этот механизм для нахождения обратного пути к своим гнездам после вылазок за пропитанием[530].

Из тысяч видов муравьев некоторые используют солнце для ориентации сходным с пчелами образом. Они также имеют близкую к пчелам спектральную чувствительность зрения. Великий биолог Э. О. Уилсон назвал эти свойства “почти фантастической способностью к запоминанию маршрута и угловой скорости солнца”[531]. В мозгу насекомых во время их путешествий за провиантом происходит нечто невероятное: рабочий муравей идет по следу и кружит, “описывая замысловатые поисковые узоры”, пока не находит пищу; в момент каждого изгиба и поворота маршрута он фиксирует направление на солнце и угол поворота. На обратном пути он инвертирует средний угол на 180° – непростой трюк: человеку для этого понадобился бы компас, секундомер и векторный анализ.

Многие другие создания ориентируются по солнцу во время миграций – этим свойством обладают животные, от карибу, которые перемещаются на 2 тыс. миль (это самая длинная сухопутная миграция), до детеныша головастой морской черепахи, отправляющегося в заплыв по Атлантике на 8 тыс. миль, и замбийской кротовой крысы, китов, лосося (знаменитого своими миграциями), угрей, голубей, обычной жабы и птиц, осуществляющих безостановочный перелет от Аляски до Новой Зеландии[532].

Каждое лето шестьсот пятьдесят разных видов птиц кормятся и гнездятся по всей Северной Америке. С наступлением осени пятьсот двадцать из этих видов мигрируют на юг, чтобы вновь вернуться весной. Направление их полета зависит в основном от долготы дня, но еще и от чувствительности птицы к температуре[533]. Они путешествуют в погоне за пищей, но сравнимый импульс им придает падение (или увеличение) уровня дневного освещения.

Планирование потребляет всего 5 % энергии, требуемой для постоянной работы крыльев, поэтому парящие птицы, например ширококрылые ястребы, седлают восходящие потоки горячего воздуха. Эти термальные потоки возникают от нагретой солнцем поверхности земли и иногда позволяют птице находиться на высоте в целую милю, откуда она затем спускается по долгой пологой линии, покрывая как можно бо?льшую дистанцию[534]. Птицы могут оценить, где термальные потоки надежны и сильны, и дождаться подходящих условий, перед тем как стартовать. Поскольку восходящие потоки работают на солнечном свете, они обычно случаются в долгие летние дни, хотя сверкающее солнце может серьезно перегреть птиц – гуси, например, избегают этой опасности, путешествуя по ночам.

На протяжении веков ученые (как и простые люди) считали птиц глупыми существами, но за последние несколько лет мы приблизились к пониманию того, как эти создания ориентируются в пространстве, и начали уважать их[535]. Например, те птицы, перелет которых происходит в дневное время и которые используют солнце для ориентации в полете, должны обладать какого-то рода внутренними часами, чтобы вести отсчет времени. Положение любой точки на Земле по отношению к солнцу меняется на 15° каждый час, поэтому, чтобы постоянно корректировать свое направление, птица должна определять отношение траектории солнца к вектору собственного движения несколько раз в день. Другими словами, их солнечный компас должен иметь временной компенсаторный механизм[536]. С точки зрения птицы, если солнце в данный момент находится выше, чем оно должно быть в пункте назначения в это время дня, то следует лететь от солнца, если ниже – по направлению к нему.

Слепая техасская саламандра живет в пещерных подземных ручьях и никогда не видит солнца. Известно, что их существует менее сотни особей (Dante Fenolio / Photo Researchers, Inc.)

Точно так же, как некоторые животные стремятся к Солнцу, некоторые другие пытаются его избежать. Крошечная селевиния, или боялычная соня, которая была открыта только в 1939 году, не может выдержать более 8 мин постоянного солнечного освещения, у нее начинается болезненная реакция. Не обладющие потовыми железами рептилии особо чувствительны к теплу и всегда стремятся в тень[537]. Их называют холоднокровными, но это неправильный термин, на самом деле они очень точно регулируют температуру тела посредством солнечного освещения. Альбинос королевской змеи часто не выживает в естественных условиях, потому что не может получить тепло в достаточном объеме. Австралийские магнитные термиты строят большие тонкие термитники, обращенные плоскими сторонами к северу и югу, и могут перемещаться к северной стороне, чтобы воспользоваться солнечным теплом, а когда жара станет нестерпимой, охладиться на южной стороне[538].

Надписи на табличках: "Восход солнца", "Заход солнца", "Полдень".

Есть животные, которые, по всей видимости, обходятся вовсе без солнца. Одно из таких, европейский протей (Proteus anguinus), обитает в подземных водах Южной Европы, в особенности в бассейне реки Сочи в Словении. Протей обладает легкими, четырьмя ногами, небольшими зубами, образующими сито для удержания крупных предметов в пасти (так что он предположительно является хищником), головой как у угря и змееподобным туловищем; ни плавников, ни глаз у него нет. Он ест, спит и размножается под водой. Обычно белого полупрозрачного цвета, на свету меняет оттенок на оливковый.

Некоторые из этих видов утратили свои ставшие бесполезными органы, другие (как медведи, летучие мыши и совы) предпочитают темноту, но, будучи совсем лишены солнца, эти животные скоро погибнут.

В начале 1960-х британский ученый, доктор Джеймс Лавлок (р. 1919), работавший для НАСА над обнаружением жизни на Марсе, выдвинул гипотезу Геи, названную так в честь греческой богини земли. “Биосфера есть саморегулирующаяся сущность, способная поддерживать здоровое состояние нашей планеты, контролируя окружающую среду на химическом и физическом уровнях”, – писал Лавлок в своем бестселлере Gaia: A New Look at Life (“Гея: новый взгляд на жизнь”)[539]. Теория гласит, что живые компоненты Земли регулируют неживые (атмосферу, океаны) в собственных целях, стабилизируя окружающую среду и сохраняя ее благоприятной для себя. Вся эта система в комплексе может рассматриваться как единый организм, таким образом, наш мир регулирует сам себя, чтобы сохранять благоприятность для огромного числа взаимодействующих видов, составляющих “жизнь” этого мира. Другими словами, земной шар работает над тем, чтобы все пребывало в идеальном равновесии.

Среди массированной критики этой теории встречался и тот аргумент, что такая гипотеза со стороны эволюции предполагает прогнозирование и планирование, тогда как все свидетельствует о том, что жизнь скорее случайна. Лавлок уточнил свои идеи во второй книге (с тех пор он написал еще четыре), разработав математическую модель, которую назвал Daisyworld (“Маргаритковый мир”): на гипотетической необитаемой планете есть два вида растений – черные и белые маргаритки, организованные так, чтобы поддерживать равновесие температуры и атмосферы в идеальном для роста маргариток состоянии. Черные маргаритки поглощают солнечный свет и нагревают планету, белые отражают свет и охлаждают планету, оба вида при этом по обстоятельствам увеличивают или уменьшают свою популяцию. Иными словами, живые системы стабилизируют свою глобальную окружающую среду. Не совсем ясно, насколько хорошо модель маргариткового мира передает всю сложность климата и биосферы Земли, и ученые, особенно биологи-эволюционисты, до сих пор относятся к идее Лавлока с сомнением. Впрочем, некоторые его аргументы были приняты. Как писал Оливер Мортон, “идея жизни как пассивного содержимого, приспосабливающегося к своему окружению без всякой возможности воздействия, – а ведь это действительно было главной парадигмой еще сорок лет назад, – окончательно устарела”[540]. Сейчас мы уже вполне готовы принять идею о сотрудничестве Земли с Солнцем.

Данный текст является ознакомительным фрагментом.