ПРОЦЕСС ФОРМИРОВАНИЯ ИЗОБРАЖЕНИЯ НА ТУРИНСКОЙ ПЛАЩАНИЦЕ

We use cookies. Read the Privacy and Cookie Policy

ПРОЦЕСС ФОРМИРОВАНИЯ ИЗОБРАЖЕНИЯ НА ТУРИНСКОЙ ПЛАЩАНИЦЕ

Мы благодарны доктору Алану Миллсу, давшему разрешение процитировать его последнюю статью, которая описывает один из возможных процессов формирования изображения на Туринской плащанице .[221] Надеемся, он простит нас за то, что мы несколько упростили подробное научное описание этого химического процесса, чтобы оно стало понятнее неспециалистам.

По мнению доктора Миллса, в объяснении нуждались следующие особенности изображения на плащанице:

1. Отсутствие существенных искажений, неизбежных при контактном отпечатке.

Если изображение образовалось в результате контакта льняной ткани с покрытым потом и кровью телом, на нем должны быть заметны искажения, подобные тем, что получились при контактном отпечатке лица Криса. Эффект заключается в существенном расширении лица из-за того, что ткань плотно облегает лицо со всех сторон, а при расправлении на плоской поверхности изображение растягивается в ширину. На плащанице нет подобных искажений. Черты лица на плащанице имеют нормальные пропорции, и это значит, что изображение не могло появиться в результате непосредственного контакта.

2. Плотность изображения обратно пропорциональна расстоянию ткани от кожи, причем процесс переходит в стадию насыщения на расстоянии 4 сантиметров.

Чем ближе ткань плащаницы к коже, тем темнее изображение. До расстояния 4 см от лица имеет место обратная серая шкала, далее происходит насыщение.

3. На изображении не заметно следов от кисти.

Если бы изображение на плащанице было нарисовано, остались бы следы кисти.

4. Процесс затронул только поверхностный слой ткани и не проник на обратную сторону.

Если бы изображение на плащанице образовалось в результате воздействия красящего вещества (крови или краски), то это вещество обязательно впиталось бы в ткань, оставив пятна на обратной стороне.

5. Изменение насыщенности изображения достигается изменением плотности пожелтевших волокон, а не изменением интенсивности цвета.

Похоже, изображение сформировано «цифровым» способом, когда тональная шкала является иллюзией, возникающей в результате изменения плотности изменивших цвет волокон.

6. Пятна крови защитили ткань от окрашивания в желтый цвет.

Доктор Миллс заметил, что образцы в очень старом гербарии, которые долго хранили в высушенном виде, образуют желто-коричневые отпечатки на целлюлозе, причем при получении фотографического негатива с использованием синего фильтра на изображении можно различить мельчайшие детали. Миллс нашел яркие примеры этого эффекта в образцах гербария университета Лестера, хранившихся с 1888 года. Считалось, что эти отпечатки, известные под названием узоров Фолкрингера, образуются в результате химических реакций с участием молочной кислоты.

Другое явление, на которое обратил внимание доктор Миллс, в свое время стало причиной проблем у первых производителей фотопластинок, обнаруживших, что изображения могут образовываться в полной темноте при контакте с газетной бумагой, смолистым деревом, алюминием и растительными маслами. Поначалу специалисты пришли к выводу, что этот так называемый «эффект Рассела» обусловлен выделением перекиси водорода. В 90-х годах девятнадцатого века производители фотопластинок научились изготавливать эмульсию, не подверженную этому эффекту, и интерес к необычному процессу получения изображений, который не требовал света, угас.

Доктор Миллс показал, что от тела обнаженного человека исходит ламинарный (без завихрений) поток воздуха на расстояние до 80 сантиметров и что любой частичке, обусловливающей формирование изображения, требуется около 1 секунды, чтобы преодолеть расстояние в 4 см от тела до ткани. Суть процесса описывается следующим образом:

Только в высшей степени нестабильный активный компонент позволит однородному вертикальному потоку создать модулированное изображение.

Нестабильные частицы, которые могли вызвать пожелтение волокон ткани, представляют собой разновидность свободных радикалов, получившую название реактивного кислорода.

Свободный радикал — это атом с лишними электронами, количество которых не совпадает с количеством положительно заряженных протонов ядра. Эти дополнительные электроны называются непарными и способствуют появлению у молекулы отрицательного заряда. Обычная молекула кислорода имеет два внешних электрона (два атома кислорода соединяются, образуя молекулу, которая обозначается 02). Эти электроны способны поглощать энергию, в результате чего образуется нестабильная молекула, которая при определенных условиях может отдавать энергию. Такой процесс напоминает заряд никелевого аккумулятора с последующим закорачиванием клемм, что приводит к выделению большого количества энергии. Самая долгоживущая из этих молекул, получившая название синглетного кислорода, не имеет заряда, а дополнительная энергия накоплена ее электронами. Эта молекула не может долго существовать в таком «возбужденном» состоянии, и поэтому она быстро возвращается к норме, выделяя при этом энергию.

В газообразном состоянии синглетный кислород существует достаточно долго — по меркам химии. Способ измерения времени жизни такого газа состоит в следующем: берется довольно большое количество вещества и подсчитывается время, за которое половина молекул превращается в обычный кислород; этот параметр называется «временем полураспада». Доктор Миллс определил, что время полураспада синглетного кислорода составляет около 80 миллисекунд (одна тысячная часть секунды), и показал, что ацидозный шок в результате увеличения концентрации молочной кислоты при травме во время распятия приводит к тому, что клетки кожи жертвы начинают выделять синглетный кислород.

Эти атомы кислорода могут переноситься ламинарными потоками вертикально вверх и осаждаться на ткани, причем все они вернутся в нормальное состояние за время, необходимое для преодоления максимум 4 сантиметров. Чем ближе ткань к телу, тем большее количество атомов синглетного кислорода достигает ее в этой точке.

Высвобождение энергии из реактивного кислорода вызовет пожелтение волокон целлюлозы — этот процесс является постоянной головной болью для кураторов музеев, и бороться с ним можно лишь одним способом — выставляя наиболее чувствительные экспонаты при низком уровне освещенности. Доктор Миллс показал, что при определенных условиях процесс выделения синглетного кислорода вызовет пожелтение любых волокон ткани, подвергнувшихся воздействию нестабильных атомов кислорода. Молекулы настолько нестабильны, что мгновенно поглощаются поверхностью ткани, формируя изображение. Чем ближе травмированная кожа к ткани, тем большее число волокон изменят цвет и тем темнее получится отпечаток.

Интересно отметить, что изменение цвета не происходит мгновенно. После того как молекула кислорода отдала лишнюю энергию волокнам ткани, процесс может продолжаться очень долго. Энергия играет роль катализатора, запускающего процесс, который можно сравнить с чрезвычайно медленным горением. Если ткань хранить в сухом темном месте с достаточным доступом кислорода, изображение будет темнеть до тех пор, пока в цепной химической реакции не используются все поврежденные волокна. Эта реакция, получившая название автоокисления, протекает очень медленно, и для достижения стадии насыщения требуется не один год, после чего изображение начнет постепенно тускнеть.

Теория доктора Миллса предсказывает, что изображение на плащанице со временем будет терять насыщенность, пока не исчезнет совсем. Новейшие данные свидетельствуют о том, что изображение на Туринской плащанице таинственным образом исчезает.

Он пришел к поразительным выводам:

Несмотря на то что изображения этого типа, возникающие при контакте ботанических образцов с бумагой, встречаются довольно часто, изображение на Туринской плащанице можно считать уникальным, потому что для его формирования требуется уникальное сочетание условий, каждое из которых по отдельности вполне осуществимо:

длинный саван, сотканный из тонких льняных нитей

тело покойника (необмытое?) поспешно завернули в саван и оставили в закрытом помещении с постоянной температурой

саван сняли примерно через 30 часов

саван хранили в темном сухом месте на протяжении нескольких десятилетий или даже столетии.

1. Пятна крови на плащанице представляют собой частички метагемоглобина, держащиеся на ткани при помощи белковой пленки, образовавшейся из сукровицы. При удалении пятен оказалось, что они защитили ткань от процесса пигментации — как и предсказывала теория доктора Миллса.

2. Можно показать, что «уникальное сочетание условий, каждое из которых по отдельности вполне осуществимо», о котором говорит доктор Миллс, вполне могло возникнуть при сценарии, описанном в главе 8.

длинный саван, сотканный из тонких льняных нитей. Тамплиеры практиковали такую же церемонию символического воскрешения, что и современные масоны, с использованием длинного савана из тонкого льна, который мог храниться в парижском Тампле.

тело покойника (необмытое?) поспешно завернули в саван и оставили в закрытом помещении с постоянной температурой. Обертывание тела потерявшего сознание Моле саваном — это последняя издевка Имберта перед тем, как жертву уложили в постель.

саван сняли примерно через 30 часов. Моле оставался без сознания довольно долго, возможно, вплоть до воскресного утра, когда его подняли с постели и привезли в Парижский университет, чтобы выслушать признание.

саван хранили в темном сухом месте на протяжении нескольких десятилетий или даже столетий.[222]

Плащаница была обнаружена потомками Жоффруа де Шарне через пятьдесят лет после смерти Моле. Изображение продолжало усиливаться вплоть до 1898 года, когда его впервые сфотографировали.

Мы приводим первую полноценную теорию происхождения плащаницы, которая объясняет все известные факты и согласуется с результатами радиоуглеродного анализа.

3. Работа доктора Миллса стала последним фрагментом головоломки. Изображение на плащанице медленно формировалось на протяжении пятидесяти лет, пока Жанна в поисках источников дохода не извлекла ткань на свет. Статья доктора Миллса объясняет, каким образом возникло изображение.

Кислород является элементом периодической таблицы, но обычно не встречается в виде отдельных атомов. Молекула кислорода, которым мы дышим, состоит из двух атомов и обозначается как 02 (см. рис. 1).

Слой молочной кислоты на коже человека приводит к расщеплению молекулы на два атома, причем в результате этого процесса каждый атом приобретает дополнительное количество энергии. Затем образовавшиеся атомы поднимаются вверх в отходящем от тела ламинарном потоке. Одиночные атомы кислорода нестабильны и быстро объединяются в пары, так что по мере подъема вверх все большее их количество возвращается в нормальное состояние. Процесс стабилизации практически завершается на расстоянии 4 см (см. рис. 2).

Когда одиночные атомы соединяются с атомами кислорода на поверхности ткани, высвобождается накопленная в процессе расщепления энергия, что приводит к изменению цвета волокон. Глубина повреждений не превышает одну молекулу (см. рис. 3).

Объединяясь с другим атомом, непарный атом расщепляет молекулу кислорода, в результате чего образуется новый «овдовевший» атом — и так далее. В результате возникает цепная реакция, которая продолжается до тех пор, пока обеспечено поступление кислорода. Каждый переход атома из одной молекулы в другую усиливает «ожог» ткани (см. рис. 4).

Количество «овдовевших» атомов уменьшается с расстоянием, поскольку все большее их число находит себе пару. На расстоянии 4 см большая часть атомов оказываются спаренными, и на поверхности ткани высвобождается относительно небольшое количество энергии, а изменение цвета минимально. Атомы кислорода перемещаются в ламинарном (без завихрений) потоке, и поэтому «ожог» ткани формирует цифровое изображение накрытого плащаницей (волокно либо изменило цвет, либо нет), где более близкие коже участки оказываются темнее, а дальние светлее. Получается нечто вроде фотографии, только образуют ее не фотоны, а нестабильные атомы кислорода (см. рис. 5). Данный процесс приводит к появлению негативного изображения, что мы и видим на плащанице.

Рис. 1. Атомы кислорода в природе встречаются только в спаренном состоянии как молекулы О2

Рис. 2. Контакт с молочной кислотой приводит к расщеплению молекулы кислорода

Рис. 3. Некоторые непарные атомы кислорода достигают поверхности ткани и отдают энергию в процессе объединения, что приводит к поверхностному ожогу волокон

Рис. 4. Когда отдельный атом отбирает пару у молекулы, образуется новый непарный атом, который, в свою очередь, находит себе пару — возникает цепная реакция.

Рис. 5