Великая ли Великая теорема Ферма?

We use cookies. Read the Privacy and Cookie Policy

Великая ли Великая теорема Ферма?

Великая теорема Ферма (также Последняя Теорема Ферма) утверждает что «для любого целого числа n > 2 уравнение не имеет положительных целых решений a, b, c».

Это, наверное, самая знаменитая теорема во всей математике. Теорема была сформулирована Пьером Ферма в 1637 на полях книги «Арифметика» Диофанта с припиской, что найденное им остроумное доказательство этой теоремы слишком длинно, чтобы его можно было здесь поместить. История Великой теоремы Ферма неразрывно связана с историей математики, так как затрагивает все основные темы теории чисел.

И всё же, великая ли Великая теорема?

Когда Пифагор доказывал свою теорему о прямоугольном треугольнике в котором где a, b — катеты, c — гипотенуза, то он брал натуральные числа площади. Другое дело — алгебра. Например, для нахождения катета придётся применить отрицательные числа. Извлечение корня квадратного даст нам два катета «положительный» и «отрицательный». Гипотенуза тоже может быть «положительной» и «отрицательной». Это означает, что в пространстве находятся не один, а два треугольника, то есть треугольник «расщепился». При доказательствах теоремы Ферма каждый математик использовал алгебру поляризованных чисел, а не натуральные числа. Подгонка? Не исключено. Скорее, неосмысленное оперирование. В итоге теорема Пифагора к алгебрам не имеет отношения, так как математики упражнялись не с натуральными величинами площадей, а с поляризованными числами.

Ну, а, если алгебра будет не двухполярной? Тогда мы получим не два треугольника со сторонами + и —, как в двухполярных преобразованиях имели математики 369 лет, а три треугольника.

1. Возьмём трёхполярное пространство, то есть «расщепим» треугольник не на два, как это делают математики, а на три. Тогда, вместо полярностей +, — обозначим три полярности: +,? j. В такой алгебре, а так же (?)*(j) = +.

2. Проведём такие математические преобразования, чтобы охватить несколько разделов математики (дабы не тратить впустую время на каждый раздел).

а) К тригонометрическим функциям: (cos x +sin x)*(cos x +? sin x)*(cos x +j sin x),

b) К показательной функции:.

с) В связи этих функций:

,

,

,

d) Окончательно из a), b), c) получим.

е) Поскольку cos x = b/c, sin x = а/c, где a, b — катеты, с — гипотенуза, то заменим формулу d).

f) В итоге получим:.

3. Аналогично легко доказать для алгебр с нечётным числом полярностей.

Это опровергает «Великую» теорему Ферма.

Иными словами, теорема Ферма остаётся Великой лишь в частном случае алгебры двухполярных отношений. А, так как, полярных пространств очень много, то Великое превращается в малое и частный случай.