Корректные суперпозиции
Корректные суперпозиции
Без «оговорок», то есть коммутативно, взаимоотношения выполняются если в суперпозицию ввести ещё одну четырёхполярную локу к тому, что приведено выше.
1.? -?
2. - + —
3. -? -?
4. + + +
4. Янтра?:
(?)*(?) =?
(?)*(?) =??
(?)*(??) = +,
(??)*(??) =?
(?)*(?) = +.
(+)*(+) = +.
Теперь
(?)*(j)*(k)*(?) =?.
Отсюда:
? = (j)*(k)*(?),
j = (?)*(k)*(?),
k = (?)*(j)*(?),
?= (?)*(j)*(k).
Взаимодействия, известные из алгебры «действительных чисел» теперь не требует оговорок, то есть (?)^2*(j)^2*(k)^2*(?)^2 = (?)^2 = +. Также (?)*(j) = +, (?)*(k)= +, (?)*(?)= + и т. п. для каждой «пары». Нужно сказать, что подобное выполняется и в суперпозиции двух четырёхполярных лок.
1.? -?
2. - + —
3. -? -?
4. + + +
1. Янтра?:
(?)*(?) =?
(?)*(?) =??
(?)*(??) = +,
(??)*(??) =?
(?)*(?) = +.
(+)*(+) = +.
1. j — j
2. - + —
3. -j — j
4. + + +
2. Янтра j:
(j)*(j) =?
(j)*(?) =? j,
(j)*(? j) = +,
(?j)*(? j) =?
(?)*(?) = +.
(+)*(+) = +.
Теперь (?)*(j) = +, а также (??)*(?j) = +. Отсюда? =?j, j =??.
Мы видим, что непротиворечивых коммутативных суперпозиций может быть достаточно много и нет проблем ломать голову, с какой стороны произвести умножение и ставить под удар всю математику с её аксиомами и теоремами. Придётся некоммутативность отныне похоронить раз и навсегда.
Впрочем, уже теперь заметна закономерность — нечётное число четырёхполярных пространств приводят к противоречию. Это легко доказать теоремой.
Более того, некоммутативность можно считать в самой математике не приемлемой. Почему? В формальных системах нет предпочтения. Предпочтение приводит к противоречию. Сверх того, когда речь шла о суперпозиции трёх пространств, то тут ещё можно фиксировать оговорки. Но дальше, когда в суперпозицию будут вводиться локи больших размеров и большего числа, оговорки выльются в неуправляемую систему.