Четырёхполярность
Четырёхполярность
Плоскостная четырёхполярность
Четыре полярных объекта А, В, С, D составляют эту локу так, что пятого не дано. Согласно теореме 2 эта лока имеет ноль. Выберем D? 0.
Теорема 4.
В четырёхполярной локе законы отношений будут:
а) А + А = В, С + С = В, В + В = 0.
b) 4А = 0, 4В = 0, 4С = 0.
с) 5А = А, 5В = В, 5С = С.
d) А + В = С, В + С = А, А + С = 0.
Доказательство.
1. Согласно теореме 2: А + 0 = А, В + 0 = В, С + 0 = С, 0 + 0 = 0.
2. Если А + С = 0, то А + В? А, В, 0. Остаётся А + В = С.
3. Из А + В = С имеем С + (А + В) = С + С, то есть С + С = В.
4. А + А? С, 0. Остаётся А + А = В. Тогда В + В = 0. Откуда 4А = 0, а также 4С = 0, но 2В = 0.
5. Наконец, 5А = А, 5С = С, 3В = 5В = 0.
Более 800 000 книг и аудиокниг! 📚
Получи 2 месяца Литрес Подписки в подарок и наслаждайся неограниченным чтением
ПОЛУЧИТЬ ПОДАРОКЧитайте также
Комплексные числа. Четырёхполярность
Комплексные числа. Четырёхполярность Комплексные числа Исторически комплексные числа появились как необходимость извлекать квадратный корень из отрицательного числа. Такие числа стали называть «мнимыми» (?) Теперь мы знаем, что это равнозначно «расщеплению» локи 2.
Плоскостная четырёхполярность
Плоскостная четырёхполярность Четыре полярных объекта А, В, С, D составляют эту локу так, что пятого не дано. Согласно теореме 2 эта лока имеет ноль. Выберем D? 0.Теорема 4.В четырёхполярной локе законы отношений будут:а) А + А = В, С + С = В, В + В = 0.b) 4А = 0, 4В = 0, 4С = 0.с) 5А = А, 5В = В, 5С =
Объёмная четырёхполярность
Объёмная четырёхполярность 1. Четыре полярных объекта А, В, С, D составляют локу 4. Пятого не дано.2. Мы уже знаем, согласно теореме 4 § 3, что один из этих объектов займёт место единицы 0. Предположим, что это объект D. Поэтому без доказательств можно записать:(А)*(0) = А; (В)*(0) = В;