Последовательность Фибоначчи
Последовательность Фибоначчи
С историей золотого сечения связано имя математика Леонардо из Пизы, известного под именем Фибоначчи (сын Боначчи). Он был самым знаменитым математиком Средневековья. В 1202 году вышел в свет его труд «Книга об абаке» (счетной доске), где были собраны все известные в то время задачи, в том числе очень занятная задачка про кроликов. На примере живой природы она доходчиво разъясняла, что же такое последовательность Фибоначчи. Вот ее условие.
«Некто поместил пару кроликов в некоем месте, огороженном со всех сторон стеной, чтобы узнать, сколько пар кроликов родится при этом в течение года, если природа кроликов такова, что через месяц пара кроликов производит на свет другую пару, а рождают кролики со второго месяца после своего рождения».
Поскольку первая пара кроликов – новорожденные, то на второй месяц они не дадут приплода, и останется одна пара. На третий месяц они произведут одну пару: 1 + 1 = 2. На четвертый месяц из двух пар потомство даст лишь одна пара (вторая еще не дает приплода): 2 + 1 = 3 пары. На пятый месяц две родившиеся на третий месяц пары дадут потомство: 3 + 2 = 5 пар. На шестой месяц потомство дадут только те пары, которые родились на четвертом месяце: 5 + 3 = 8 пар и т. д.
Размышляя над подобным явлением, Фибоначчи вывел следующий ряд цифр.
Таким образом, из данной задачи выводится устойчивая закономерность, и эти числа образуют знаменитую последовательность 1, 1, 2, 3, 5, 8, 13, 21, 34, 55, 89, 144, 233… Сами числа называются числами Фибоначчи, а их последовательность – последовательностью Фибоначчи.
Все достаточно просто, как все великое. В чем состоит смысл этой последовательности?
Оказывается, каждый ее член, начиная с третьего, равен сумме двух предыдущих: 2 + 3 = 5; 3 + 5 = 8; 5 + 8 = 13; 8 + 13 = 21; 13 + 21 = 34 и т. д., а отношение смежных чисел ряда приближается к отношению золотого деления. Оно обозначается греческой буквой «фи» – Ф, и считается равным 1,618.
Оно дает непрерывное деление отрезка прямой в золотой пропорции, увеличение или уменьшение его до бесконечности, когда меньший отрезок так относится к большему, как больший ко всему.
Эту величину Лука Пачоли назвал Божественной пропорцией. Ее еще называют золотая пропорция, золотое среднее, золотое сечение. Именно это соотношение является одним из «сокровищ» геометрии.
Это еще не все. При делении любого члена последовательности Фибоначчи на следующий за ним получается величина, обратная фи (1: 1,618 = 0,618). Это примечательное явление, потому что оно также бесконечно.
При делении каждого числа на следующее за ним через одно получается 0,382.
1: 0,382 = 2,618.
Таким образом, выстраивается основной набор коэффициентов Фибоначчи: 4,235, 2,618, 1,618, 0,618, 0,382, 0,236, которые играют особую регулирующую роль в природе.
Ряд Фибоначчи остался бы всего лишь математическим казусом, если бы исследователи растительного и животного мира и искусства неизменно не приходили бы к этому ряду как арифметическому выражению закона золотого деления.
Следует подчеркнуть, что гениальный Фибоначчи всего лишь сформулировал и тем самым как бы напомнил человечеству золотую последовательность, которая была известна под названием золотое деление еще в древнейшие времена.
Просто удивительно, как последовательность Фибоначчи проявляется в живом мире. Сам атом «построен» по принципу золотого сечения. Этот принцип относится к большинству, если не ко всем сферам современной науки.
Представление о золотом сечении дополняет спираль, очень распространенная в природе. Спирально завитую раковину изучал Архимед и вывел с ее помощью уравнение. Спираль, вычерченная по этому уравнению, называется его именем. Увеличение ее шага всегда равномерно. В настоящее время спираль Архимеда широко применяется в технике.
Многие природные процессы развиваются именно по спирали. Например, метель закручивает снежные массы по спиралям, ураган формируется и раскручивается также по спирали. Обыкновенный паук плетет свою паутину спиралеобразно. Испуганное стадо северных оленей разбегается по спирали. Двойной спиралью закручена молекула ДНК. Гете называл спираль «кривой жизни». На ветках деревьев листья растут не беспорядочно, а винтообразно и в направлении по спирали. Спираль четко прослеживается в расположении семян подсолнечника.
Совместные исследования ботаников и математиков пролили свет на эти удивительные явления. Выяснилось, что в расположении листьев на ветке, семян подсолнечника, шишек сосны проявляет себя ряд Фибоначчи, а значит, закон золотого сечения. Ананас и кактус тоже воплощают принцип золотого сечения.
Эти закономерности проявляются в энергетических переходах элементарных частиц, в строении химических соединений, в планетарных и космических системах, в генных структурах живых организмов, в строении отдельных органов человека и тела в целом, а также в биоритмах и функционировании головного мозга в зрительном восприятии.
Более 800 000 книг и аудиокниг! 📚
Получи 2 месяца Литрес Подписки в подарок и наслаждайся неограниченным чтением
ПОЛУЧИТЬ ПОДАРОКДанный текст является ознакомительным фрагментом.
Читайте также
Последовательность и систематичность
Последовательность и систематичность Для того чтобы добиться успеха как можно скорее, вам следует:? начать работу с книгой с первого дня лунного цикла. Последовательность действий очень важна, так как все лунные дни находятся в тесной взаимосвязи. Это касается любого
Последовательность Фибоначчи и спираль Архимеда
Последовательность Фибоначчи и спираль Архимеда Плотная пища жен Фибоначчи Только на пользу им шла, не иначе. Весили жены, согласно молве, Каждая – как предыдущие две. Джеймс Линдон Числовой ряд Фибоначчи – загадочная последовательность, воспетая в романах Дэна
Последовательность запуска сервитора
Последовательность запуска сервитора После того как вы создали сервитора, его надо «запустить», чтобы он приступил к выполнению возложенной на него миссии. Есть множество различных способов «запуска» сервиторов, и будет неплохо, если вы поэкспериментируете с техниками,
Спираль Фибоначчи
Спираль Фибоначчи Математик средневековья Леонардо Фибоначчи открыл определенный порядок, или последовательность, в которой происходит рост растений. Вот эта последовательность: 1, 1, 2, 3, 5, 8, 13, 21, 34, 55, 89, 144, 233 и так далее. Я уже упоминал о ней при обсуждении роста растений.
Глава № 9 Фибоначчи, золотое сечение и пентакль
Глава № 9 Фибоначчи, золотое сечение и пентакль Последовательность Фибоначчи — не просто случайная числовая схема, придуманная этим итальянским математиком. Она является плодом осмысления пространственных отношений, имеющих место в природе и впоследствии получившими
Последовательность выполнения второго упражнения
Последовательность выполнения второго упражнения Предварительная часть1. Разбиться на пары и встать друг напротив друга на расстоянии в 1,5–2 метра.2. На несколько секунд закрыть глаза и представить себе облик стоящего напротив партнера.3. Открыть глаза и смотреть
Последовательность выполнения шестого упражнения
Последовательность выполнения шестого упражнения 1. Найдите уединенное тихое место. Сядьте, скрестив ноги (по-турецки), ладони положив на колени. Закройте глаза.2. Сделайте несколько глубоких вдохов и выдохов, сосредоточившись на самом процессе дыхания.3. Положите ладони
8 Согласование полярностей бинарной последовательности и последовательности Фибоначчи
8 Согласование полярностей бинарной последовательности и последовательности Фибоначчи Последовательность Фибоначчи и Спираль ФибоначчиДля того, чтобы понять, почему эти восемь спиралей вокруг Канона да Винчи не являются спиралями Золотого Сечения, и для понимания
Связка 5. Базовая последовательность
Связка 5. Базовая последовательность В качестве возможного примера построения последовательностей на основе принципов, описанных здесь (чередование блоков открытых и закрытых асан, последовательной отстройки структуры при помощи элементов динамики и шпагатов, асан с
Поразительная последовательность
Поразительная последовательность Сны у всех людей сильно отличаются. Если ОСП – просто сны или видения, почему они настолько повторяемы и последовательны?Подумайте о произвольности снов. Если 20 человек заснут взволнованными, у некоторых во сне в самом деле отразится их
Частичное подкрепление или последовательность?
Частичное подкрепление или последовательность? Одна из самых трудных вещей, которые мы в качестве родителей должны делать, – это быть последовательными во взаимоотношениях с детьми. Тогда дети будут знать, в какой точке развития они находятся и где их границы. Они будут