Определение координат светил из наблюдений

We use cookies. Read the Privacy and Cookie Policy

Определение координат светил из наблюдений

Полярное расстояние незаходящей звезды равно полуразности ее зенитных расстояний в кульминациях. Поэтому наблюдение кульминаций позволяет определить склонение незаходящих звезд. Для любой звезды сумма склонения, зенитного расстояния в нижней кульминации и географической широты места наблюдения равна 180°. Поэтому из наблюдений незаходящих (лучше всего околополярных) звезд можно определить широту места, после чего для вычисления склонения произвольной звезды достаточно измерить ее зенитное расстояние в любой кульминации. Таким образом, для определения склонений звезд достаточно уметь измерять их зенитные расстояния « кульминациях, что без труда осуществляется простейшими угломерными инструментами, неподвижно закрепленными в плоскости меридиана (если, конечно, не требовать большой точности),

Если прямые восхождения отсчитываются не от точки весны, а от какой–нибудь яркой звезды (как это и было на заре астрономии), то для определения прямого нисхождения любого светила достаточно часов, поскольку оно равно разности момента кульминаций светила и момента кульминаций «начальной» звезды. Но при отсчете прямого восхождения от точки весны, не отмеченной на небесной сфере никакой яркой звездой, приходится для их измерения поступать довольно сложным образом. Можно, например, измеряя меридианные зенитные расстояния Солнца, найти его склонение. Оно непрерывно изменяется, достигая максимума в период солнцестояний. Поскольку этот максимум равен наклону эклиптики к экватору, мы тем самым, в частности, найдем и этот наклон. Но, зная наклон эклиптики к экватору и склонение Солнца, можно, решая соответствующий сферический треугольник, найти и прямое восхождение Солнца. После этого остается принять Солнце за «начальную» звезду. Поскольку наблюдения Солнца сложны с технической стороны и недостаточно точны, для определения точки весны привлекаются наблюдения других тел Солнечной системы, в частности малых планет.

Во всяком случае, мы видим, что основой измерения обеих экваториальных координат (склонения и прямого восхождения) являются наблюдения звезд в кульминациях. Для этого требуются только достаточно точный угломерный инструмент (для измерения зенитных расстояний) и точные часы (для измерения момента кульминации).

На измерение зенитных расстояний вредное влияние оказывает рефракция (преломление лучей в атмосфере Земли). Ошибка рефракции может достигать 0,5°.

Вместо экваториальных координат, иногда удобнее с помощью инструментов типа теодолита или астролябии получать непосредственно из наблюдений горизонтальные координаты светил (на азимут рефракция не влияет), которые можно по формулам сферической тригонометрии пересчитать, зная точное время наблюдений, в склонение и прямое восхождение.

Эклиптические координаты в настоящее время находят не из наблюдений, а вычисляют по экваториальным. Однако прежде их также находили из наблюдений: например, сохранились так называемые армиллярные сферы, принадлежащие Тихо Браге, с помощью которых он непосредственно отсчитывал долготы и широты светил. Однако этим путем получаются значительно худшие по точности результаты.

Эклиптические координаты полезны при изучении движения планет, для светил же, не имеющих собственного движения вокруг Солнца (звезд), они неудобны (как с теоретической, так и с практической, наблюдательной, точки зрения). Именно поэтому все современные астрономические таблицы используют экваториальные координаты.